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But they seem to exist “most of the time.”
How to capture this mathematically?
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Previous Work: i.i.d. Utilities

∼𝒟

Theorem [MS21]. If 
*, 

envy-free allocations exist 
in i.i.d. model with 
probability → 1.

m ∈ Ω(n log n/log log n)

* under some assumption on   
Manurangsi, P. & Suksompong, W. Closing 
Gaps in Asymptotic Fair Division. SIAM J. 

Discrete Math. 35, 668–706 (2021).

𝒟

n: number of agents 
m: number of items
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i.i.d. values values with structure

Structure like on the right unlikely in i.i.d. 
models. If practice looks like right-hand side, 
limits relevance of i.i.d. results.
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4 5 0 4

2 4 2 2

2 5 1 3

1. Start from worst-case 
base values.

2. For each entry, flip 
biased coin with 
probability .p ≪ 1

3. Where coin comes up 
heads, “boost” value 
by amount .∼𝒟

+∼𝒟

+∼𝒟
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Our Model: Smoothed Analysis

base utilities

random 
boosts

smoothed 
utilities

Theorem. If  
and , envy-
free allocations exist in 
smoothed model with 
probability → 1.

m ≫ n log n
p ≫ log n/m

n: number of agents 
m: number of items 
p: boost probability
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Check out our paper! 
tinyurl.com/smoothEF


