
Fair Allocations
for Smoothed

Utilities
Yushi Bai, Uriel Feige, Paul Gölz

& Ariel Procaccia

Fair Item Allocation
Setting:
- indivisible goods
- additive utilities

5 5 0 4

2 1 2 2

2 1 1 3

Envy Freeness (EF)
Setting:
- indivisible goods
- additive utilities

5 5 0 4

2 1 2 2

2 1 1 3

Envy Freeness (EF)
Setting:
- indivisible goods
- additive utilities

5 5 0 4

2 1 2 2

2 1 1 3

 values their
own bundle at 2,

Envy Freeness (EF)
Setting:
- indivisible goods
- additive utilities

5 5 0 4

2 1 2 2

2 1 1 3

 values their
own bundle at 2,
but values ’s
bundle at 1+3=4

Envy Freeness (EF)
Setting:
- indivisible goods
- additive utilities

5 5 0 4

2 1 2 2

2 1 1 3

 values their
own bundle at 2,
but values ’s
bundle at 1+3=4
⇒ envies .

Envy Freeness (EF)
Setting:
- indivisible goods
- additive utilities

5 5 0 4

2 1 2 2

2 1 1 3

When Do Envy Free Allocations Exist?

In worst case, envy-free allocations needn’t exist:
When Do Envy Free Allocations Exist?

In worst case, envy-free allocations needn’t exist:
When Do Envy Free Allocations Exist?

0 0 10 0

1 0 9 0

In worst case, envy-free allocations needn’t exist:
When Do Envy Free Allocations Exist?

But they seem to exist “most of the time.”

0 0 10 0

1 0 9 0

In worst case, envy-free allocations needn’t exist:
When Do Envy Free Allocations Exist?

But they seem to exist “most of the time.”
How to capture this mathematically?

0 0 10 0

1 0 9 0

Previous Work: i.i.d. Utilities

∼𝒟

∼𝒟 ∼𝒟 ∼𝒟∼𝒟

∼𝒟 ∼𝒟 ∼𝒟

∼𝒟 ∼𝒟 ∼𝒟∼𝒟

Previous Work: i.i.d. Utilities

∼𝒟

Theorem [MS21]. If
*,

envy-free allocations exist
in i.i.d. model with
probability → 1.

m ∈ Ω(n log n/log log n)

* under some assumption on
Manurangsi, P. & Suksompong, W. Closing
Gaps in Asymptotic Fair Division. SIAM J.

Discrete Math. 35, 668–706 (2021).

𝒟

n: number of agents
m: number of items

∼𝒟 ∼𝒟 ∼𝒟∼𝒟

∼𝒟 ∼𝒟 ∼𝒟

∼𝒟 ∼𝒟 ∼𝒟∼𝒟

Limitations of Previous Work
i.i.d. values

Limitations of Previous Work
i.i.d. values values with structure

Limitations of Previous Work
i.i.d. values values with structure

Structure like on the right unlikely in i.i.d.
models. If practice looks like right-hand side,
limits relevance of i.i.d. results.

Our Model: Smoothed Analysis

Our Model: Smoothed Analysis

4 5 0 4

2 4 2 2

2 5 1 3

1. Start from worst-case
base values.

Our Model: Smoothed Analysis

4 5 0 4

2 4 2 2

2 5 1 3

1. Start from worst-case
base values.

2. For each entry, flip
biased coin with
probability .p ≪ 1

Our Model: Smoothed Analysis

4 5 0 4

2 4 2 2

2 5 1 3

1. Start from worst-case
base values.

2. For each entry, flip
biased coin with
probability .p ≪ 1

Our Model: Smoothed Analysis

4 5 0 4

2 4 2 2

2 5 1 3

1. Start from worst-case
base values.

2. For each entry, flip
biased coin with
probability .p ≪ 1

3. Where coin comes up
heads, “boost” value
by amount .∼𝒟

+∼𝒟

+∼𝒟

Our Model: Smoothed Analysis

base utilities

Our Model: Smoothed Analysis

base utilities

random
boosts

smoothed
utilities

Our Model: Smoothed Analysis

base utilities

random
boosts

smoothed
utilities

with high probability,
envy-free allocation exists

Our Model: Smoothed Analysis

base utilities

random
boosts

smoothed
utilities

Theorem. If
and , envy-
free allocations exist in
smoothed model with
probability → 1.

m ≫ n log n
p ≫ log n/m

n: number of agents
m: number of items
p: boost probability

Algorithm for Finding EF Allocations w.h.p.

for :ρ = 1, 2, 4, …, m

Algorithm for Finding EF Allocations w.h.p.

for :ρ = 1, 2, 4, …, m

 - with LP, allocate fractional items such that
 is maximized.

ρ
t = min ui(Ai) − ui(Aj)

Algorithm for Finding EF Allocations w.h.p.

agents i ≠ j
’s utility for own bundlei ’s utility for ’s bundlei j

for :ρ = 1, 2, 4, …, m

 - with LP, allocate fractional items such that
 is maximized.

ρ
t = min ui(Ai) − ui(Aj)

Algorithm for Finding EF Allocations w.h.p.

agents i ≠ j
’s utility for own bundlei ’s utility for ’s bundlei j

for :ρ = 1, 2, 4, …, m

 - with LP, allocate fractional items such that
 is maximized.

ρ
t = min ui(Ai) − ui(Aj)

Algorithm for Finding EF Allocations w.h.p.

+ ++ =ρ

agents i ≠ j
’s utility for own bundlei ’s utility for ’s bundlei j

for :ρ = 1, 2, 4, …, m

 - with LP, allocate fractional items such that
 is maximized.

ρ
t = min ui(Ai) − ui(Aj)

Algorithm for Finding EF Allocations w.h.p.

+ ++ =ρ

agents i ≠ j
’s utility for own bundlei ’s utility for ’s bundlei j 😅

t

t

for :ρ = 1, 2, 4, …, m

 - with LP, allocate fractional items such that
 is maximized.

ρ
t = min ui(Ai) − ui(Aj)

 - randomly round this fractional allocation.

Algorithm for Finding EF Allocations w.h.p.

+ ++ =ρ

agents i ≠ j
’s utility for own bundlei ’s utility for ’s bundlei j 😅

t

t

for :ρ = 1, 2, 4, …, m

 - with LP, allocate fractional items such that
 is maximized.

ρ
t = min ui(Ai) − ui(Aj)

 - randomly round this fractional allocation.

Algorithm for Finding EF Allocations w.h.p.

+ ++ =ρ

agents i ≠ j
’s utility for own bundlei ’s utility for ’s bundlei j 😅

t

t

for :ρ = 1, 2, 4, …, m

 - with LP, allocate fractional items such that
 is maximized.

ρ
t = min ui(Ai) − ui(Aj)

 - randomly round this fractional allocation.

Algorithm for Finding EF Allocations w.h.p.

agents i ≠ j
’s utility for own bundlei ’s utility for ’s bundlei j

for :ρ = 1, 2, 4, …, m

 - with LP, allocate fractional items such that
 is maximized.

ρ
t = min ui(Ai) − ui(Aj)

 - randomly round this fractional allocation.
 - allocate remaining items using round robin.

Algorithm for Finding EF Allocations w.h.p.

agents i ≠ j
’s utility for own bundlei ’s utility for ’s bundlei j

for :ρ = 1, 2, 4, …, m

 - with LP, allocate fractional items such that
 is maximized.

ρ
t = min ui(Ai) − ui(Aj)

 - randomly round this fractional allocation.
 - allocate remaining items using round robin.

Algorithm for Finding EF Allocations w.h.p.

agents i ≠ j
’s utility for own bundlei ’s utility for ’s bundlei j

for :ρ = 1, 2, 4, …, m

 - with LP, allocate fractional items such that
 is maximized.

ρ
t = min ui(Ai) − ui(Aj)

 - randomly round this fractional allocation.
 - allocate remaining items using round robin.

Algorithm for Finding EF Allocations w.h.p.

agents i ≠ j
’s utility for own bundlei ’s utility for ’s bundlei j

for :ρ = 1, 2, 4, …, m

 - with LP, allocate fractional items such that
 is maximized.

ρ
t = min ui(Ai) − ui(Aj)

 - randomly round this fractional allocation.
 - allocate remaining items using round robin.

Algorithm for Finding EF Allocations w.h.p.

agents i ≠ j
’s utility for own bundlei ’s utility for ’s bundlei j

for :ρ = 1, 2, 4, …, m

 - with LP, allocate fractional items such that
 is maximized.

ρ
t = min ui(Ai) − ui(Aj)

 - randomly round this fractional allocation.
 - allocate remaining items using round robin.
 - if EF, return, else continue loop.

Algorithm for Finding EF Allocations w.h.p.

agents i ≠ j
’s utility for own bundlei ’s utility for ’s bundlei j

for :

 - with LP, allocate fractional items such that
 is maximized.

 - randomly round this fractional allocation.
 - allocate remaining items using round robin.
 - if EF, return, else continue loop.

ρ = 1, 2, 4, …, m

ρ
t = min ui(Ai) − ui(Aj)

Algorithm for Finding EF Allocations w.h.p.

agents i ≠ j
’s utility for own bundlei ’s utility for ’s bundlei j

Overview of Results
Theorem. If and , our
poly-time algorithm finds envy-free allocations in
the smoothed model with probability → 1.

m ≫ n log n p ≫ log n/m n: number of agents
m: number of items
p: boost probability

Overview of Results
Theorem. If and , our
poly-time algorithm finds envy-free allocations in
the smoothed model with probability → 1.

m ≫ n log n p ≫ log n/m n: number of agents
m: number of items
p: boost probability

+ bound on p is tight

Overview of Results
Theorem. If and , our
poly-time algorithm finds envy-free allocations in
the smoothed model with probability → 1.

m ≫ n log n p ≫ log n/m n: number of agents
m: number of items
p: boost probability

+ bound on p is tight
+ even at , round robin doesn’t guarantee envy-freenessp = m0.33/m

Overview of Results
Theorem. If and , our
poly-time algorithm finds envy-free allocations in
the smoothed model with probability → 1.

m ≫ n log n p ≫ log n/m n: number of agents
m: number of items
p: boost probability

+ bound on p is tight
+ even at , round robin doesn’t guarantee envy-freenessp = m0.33/m

Theorem. If and ,
another algorithm finds Pareto-optimal and
proportional allocations with probability → 1.

m ≫ n log n p ≫ log n/m

Overview of Results
Theorem. If and , our
poly-time algorithm finds envy-free allocations in
the smoothed model with probability → 1.

m ≫ n log n p ≫ log n/m n: number of agents
m: number of items
p: boost probability

+ bound on p is tight
+ even at , round robin doesn’t guarantee envy-freenessp = m0.33/m

Theorem. If and ,
another algorithm finds Pareto-optimal and
proportional allocations with probability → 1.

m ≫ n log n p ≫ log n/m

Check out our paper!
tinyurl.com/smoothEF

