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In worst case, envy-free allocations needn’t exist:

But they seem to exist “most of the time.”
How to capture this mathematically?
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Theorem [MS21]. If
m € Q(nlogn/loglogn)*,
envy-free allocations exist

in 1.1.d. model with
probability — 1.

n: number of agents
m: number of items

* under some assumption on &

Manurangsi, P. & Suksompong, W. Closing
Gaps in Asymptotic Fair Division. SIAM ]J.
Discrete Math. 35, 668-706 (2021).
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1.1.d. values

Structure like on the right unlikely in i.i.d.
models. If practice looks like right-hand side,
l[imits relevance of i.i.d. results.
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Our Model: Smoothed Analysis

base utilities Theorem. If m > nlogn

and p > log n/m, envy-
free allocations exist in
J random

boosts smoothed model with
probability — 1.

& & n: number of agents
smoothed m: number of items
utilities B p: boost probability
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Theorem. If m > nlogn and p > logn/m,

another algorithm finds Pareto-optimal and
, , , - Check out our paper!
proportional allocations with probability — 1. tinyurl.com/smoothEF



