Fair Allocations
5} for Smoothed

S Yushi Bai, Uriel Feige, Paul Golz
& Ariel Procaccia

Fair Item Allocation

Setting:
- indivisible goods
- additive utilities

Envy Freeness (EF)

Setting:
- indivisible goods
- additive utilities

Envy Freeness (EF)

Setting:
- indivisible goods
- additive utilities

1 values their
own bundle at 2,

Envy Freeness (EF)

Setting:
- indivisible goods
- additive utilities

1 values their
own bundle at 2,
but values J’s
bundle at 1+3=4

Envy Freeness (EF)

Setting:
- indivisible goods
- additive utilities

1 values their
own bundle at 2,
but values .’s

bundle at 1+3=4
— I envies 1.

Envy Freeness (EF)

Setting:
- indivisible goods
- additive utilities

When Do Envy Free Allocations Exist? ‘

In worst case, envy-free allocations needn’t exist:

When Do Envy Free Allocations Exist?

In worst case, envy-free allocations needn’t exist: |

When Do Envy Free Allocations Exist?

In worst case, envy-free allocations needn’t exist: |

But they seem to exist “most of the time.”

When Do Envy Free Allocations Exist? ‘

In worst case, envy-free allocations needn’t exist:

But they seem to exist “most of the time.”
How to capture this mathematically?

Previous Work: i.i.d. Utilities

Previous Work: i.i.d. Utilities

Theorem [MS21]. If
m € Q(nlogn/loglogn)*,
envy-free allocations exist

in 1.1.d. model with
probability — 1.

n: number of agents
m: number of items

* under some assumption on &

Manurangsi, P. & Suksompong, W. Closing
Gaps in Asymptotic Fair Division. SIAM]J.
Discrete Math. 35, 668-706 (2021).

Limitations of Previous Work

1.1.d. values

Limitations of Previous Work ‘
values with structure
L -

'

Limitations of Previous Work

1.1.d. values

Structure like on the right unlikely in i.i.d.
models. If practice looks like right-hand side,
l[imits relevance of i.i.d. results.

1. Start from worst-case
base values.

1. Start from worst-case
base values.

2. For each entry, flip
biased coin with

probability p < 1.

<

c W ’ 1. Start from worst-case
- base values.

j_ ©H4 ©)>5 ©0 @4 2. For each entry, flip

biased coin with

1 © ©4 ©2 ©?2 probability p < 1.
f @ @& e @3

<

‘ w ’ 1. Start from worst-case
- base values.

j_ ©H4 ©)>5 @0 @4+~2 2.For each entry, flip

biased coin with

1 © ©4 ©2 ©?2 probability p < 1.

3. Where coin comes up

1 ®©@2 @5-201 @3 heads, “boost” value

by amount ~ .

base utilities

random

J boosts

smoothed
utilities |

Our Model: Smoothed Analysis

base utilities

J random

boosts

smoothed

o with high probability,
utilities

envy-free allocation exists

Our Model: Smoothed Analysis

base utilities Theorem. If m > nlogn

and p > log n/m, envy-
free allocations exist in
J random

boosts smoothed model with
probability — 1.

& & n: number of agents
smoothed m: number of items
utilities B p: boost probability

forp=1,2,4, ..., m:

forp=1,2,4, ..., m:

- with LP, allocate p fractional items such that
t =min u(A;) — u(A;) is maximized.

agents i # J / \

i’s utility for own bundle ’s utility for j’s bundle

forp=1,2,4, ..., m:

- with LP, allocate p fractional items such that
t =min u(A;) — u(A;) is maximized.

agents i # J / \

i’s utility for own bundle ’s utility for j’s bundle

forp=1,2,4, ..., m:

- with LP, allocate p fractional items such that
t =min u(A;) — u(A;) is maximized.

agents i # J / \

i’s utility for own bundle ’s utility for j’s bundle ! y

.

)
ww
A

4

4

.+’+.+'=p

forp=1,2,4,,m

- with LP, allocate p fractional items such that
t =min u(A;) — u(A;) is maximized.

agents i # J / \

i’s utility for own bundle ’s utility for j’s bundle

e

)
M

y

A A !

=

4

.+’+.+'=p

Algorithm for Finding EF Allocations w.h.p.

forp=1,2,4, ..., m:

- with LP, allocate p fractional items such that
t =min u(A;) — u(A;) is maximized.

agents i # J / \

i’s utility for own bundle ’s utility for j’s bundle

- randomly round this fractional allocation.

Algorithm for Finding EF Allocations w.h.p.

forp=1,2,4, ..., m:

- with LP, allocate p fractional items such that
t =min u(A;) — u(A;) is maximized.

agents i # J / \

i’s utility for own bundle ’s utility for j’s bundle

- randomly round this fractional allocation.

Algorithm for Finding EF Allocations w.h.p.

forp=1,2,4, ..., m:

- with LP, allocate p fractional items such that
t =min u(A;) — u(A;) is maximized.

agents i # J / \

i’s utility for own bundle ’s utility for j’s bundle

- randomly round this fractional allocation.

Algorithm for Finding EF Allocations w.h.p.

forp=1,2,4, ..., m:

- with LP, allocate p fractional items such that
t =min u(A;) — u(A;) is maximized.

agents i # J / \

i’s utility for own bundle ’s utility for j’s bundle

- randomly round this fractional allocation.

o }o jo

- allocate remaining items using round robin.

Algorithm for Finding EF Allocations w.h.p.

forp=1,2,4, ..., m:

- with LP, allocate p fractional items such that
t =min u(A;) — u(A;) is maximized.

agents i # J / \

i’s utility for own bundle ’s utility for j’s bundle

- randomly round this fractional allocation.

o }o jo

- allocate remaining items using round robin.

Algorithm for Finding EF Allocations w.h.p.

forp=1,2,4, ..., m:

- with LP, allocate p fractional items such that
t =min u(A;) — u(A;) is maximized.

agents i # J / \

i’s utility for own bundle ’s utility for j’s bundle

- randomly round this fractional allocation.

o }o jo

- allocate remaining items using round robin.

Algorithm for Finding EF Allocations w.h.p.

forp=1,2,4, ..., m:

- with LP, allocate p fractional items such that
t =min u(A;) — u(A;) is maximized.

agents i # J / \

i’s utility for own bundle ’s utility for j’s bundle

- randomly round this fractional allocation.

o }o jo

- allocate remaining items using round robin.

Algorithm for Finding EF Allocations w.h.p.

forp=1,2,4, ..., m:

- with LP, allocate p fractional items such that
t =min u(A;) — u(A;) is maximized.

agents i # J / \

i’s utility for own bundle ’s utility for j’s bundle

- randomly round this fractional allocation.

o }o jo

- allocate remaining items using round robin.

- if EE return, else continue loop.

Algorithm for Finding EF Allocations w.h.p.

forp=1,2,4, ..., m:

- with LP, allocate p fractional items such that
t =min u(A;) — u(A;) is maximized.

agents i # J / \

i’s utility for own bundle ’s utility for j’s bundle

- randomly round this fractional allocation.

- allocate remaining items using round robin.

- if EE return, else continue loop.

Overview of Results

Theorem. If m > nlogn and p > logn/m, our n: number of agents
m: number of items

poly-time algorithm finds envy-free allocations in p: boost probability
the smoothed model with probability — 1.

Overview of Results

Theorem. If m > nlogn and p > logn/m, our n: number of agents
m: number of items

poly-time algorithm finds envy-free allocations in p: boost probability
the smoothed model with probability — 1.

+ bound on p is tight

Overview of Results

Theorem. If m > nlogn and p > logn/m, our n: number of agents
m: number of items

poly-time algorithm finds envy-free allocations in p: boost probability
the smoothed model with probability — 1.

+ bound on p is tight

+ even at p = m">>/m, round robin doesn’t guarantee envy-freeness

Overview of Results

Theorem. If m > nlogn and p > logn/m, our n: number of agents
m: number of items

poly-time algorithm finds envy-free allocations in p: boost probability
the smoothed model with probability — 1.

+ bound on p is tight

+ even at p = m">>/m, round robin doesn’t guarantee envy-freeness

Theorem. If m > nlogn and p > logn/m,

another algorithm finds Pareto-optimal and
proportional allocations with probability — 1.

Overview of Results

Theorem. If m > nlogn and p > logn/m, our n: number of agents
m: number of items

poly-time algorithm finds envy-free allocations in p: boost probability
the smoothed model with probability — 1.

+ bound on p is tight

+ even at p = m">>/m, round robin doesn’t guarantee envy-freeness

Theorem. If m > nlogn and p > logn/m,

another algorithm finds Pareto-optimal and
, , , - Check out our paper!
proportional allocations with probability — 1. tinyurl.com/smoothEF

