

Fair Allocations for Smoothed Utilities

Yushi Bai, Uriel Feige, **Paul Gölz** & Ariel Procaccia

Fair Item Allocation

Setting: - indivisible goods - additive utilities

Setting: - indivisible goods - additive utilities

Setting: - indivisible goods - additive utilities

values their own bundle at 2,

Setting: - indivisible goods - additive utilities

values their own bundle at 2, but values *'s*'s bundle at 1+3=4

Setting: - indivisible goods - additive utilities

values their own bundle at 2, but values *'s*'s bundle at 1+3=4 \Rightarrow envies

Setting: - indivisible goods - additive utilities

When Do Envy Free Allocations Exist?

But they seem to exist "most of the time."

But they seem to exist "most of the time." How to capture this mathematically?

Previous Work: i.i.d. Utilities

Previous Work: i.i.d. Utilities

Theorem [MS21]. If $m \in \Omega(n \log n / \log \log n)^*$, envy-free allocations exist in i.i.d. model with probability $\rightarrow 1$.

n: number of agents *m*: number of items

* under some assumption on ${\mathcal D}$

Manurangsi, P. & Suksompong, W. Closing Gaps in Asymptotic Fair Division. SIAM J. Discrete Math. 35, 668–706 (2021).

Limitations of Previous Work i.i.d. values

.

Limitations of Previous Work i.i.d. values values with structure

Limitations of Previous Work i.i.d. values values with structure

Structure like on the right unlikely in i.i.d. models. If practice looks like right-hand side, limits relevance of i.i.d. results.

2

2

2. For each entry, flip biased coin with probability $p \ll 1$.

2. For each entry, flip biased coin with probability $p \ll 1$.

1. Start from worst-case base values.

- 4 + 2 2. For each entry, flip biased coin with probability $p \ll 1$. $\bigcirc 2$
 - 3. Where coin comes up heads, "boost" value by amount $\sim \mathcal{D}$.

base utilities

base utilities

smoothed utilities

random boosts

base utilities

smoothed utilities

random boosts

with high probability, envy-free allocation exists

base utilities

smoothed utilities

random boosts

Theorem. If $m \gg n \log n$ and $p \gg \log n/m$, envyfree allocations exist in smoothed model with probability $\rightarrow 1$.

n: number of agentsm: number of itemsp: boost probability

for $\rho = 1, 2, 4, ..., m$:

for $\rho = 1, 2, 4, ..., m$:

- with LP, allocate ρ fractional items such that $t = \min_{\text{agents } i \neq j} u_i(A_i) - u_i(A_j) \text{ is maximized.}$

for $\rho = 1, 2, 4, ..., m$:

- with LP, allocate ρ fractional items such that $t = \min_{\text{agents } i \neq j} u_i(A_i) - u_i(A_j) \text{ is maximized.}$

for $\rho = 1, 2, 4, ..., m$:

- with LP, allocate ρ fractional items such that $t = \min_{\text{agents } i \neq j} u_i(A_i) - u_i(A_j) \text{ is maximized.}$

for $\rho = 1, 2, 4, ..., m$:

- with LP, allocate ρ fractional items such that $t = \min_{\text{agents } i \neq j} u_i(A_i) - u_i(A_j) \text{ is maximized.}$

for $\rho = 1, 2, 4, ..., m$:

- with LP, allocate ρ fractional items such that $t = \min_{\text{agents } i \neq j} u_i(A_i) - u_i(A_j) \text{ is maximized.}$ *i*'s utility for own bundle *i*'s utility for *j*'s bundle

- randomly round this fractional allocation.

for $\rho = 1, 2, 4, ..., m$:

- with LP, allocate ρ fractional items such that $t = \min_{\text{agents } i \neq j} u_i(A_i) - u_i(A_j) \text{ is maximized.}$ *i*'s utility for own bundle *i*'s utility for *j*'s bundle

- randomly round this fractional allocation.

for $\rho = 1, 2, 4, ..., m$:

- with LP, allocate ρ fractional items such that $t = \min_{\text{agents } i \neq j} u_i(A_i) - u_i(A_j) \text{ is maximized.}$ *i*'s utility for own bundle *i*'s utility for *j*'s bundle

- randomly round this fractional allocation.

for $\rho = 1, 2, 4, ..., m$:

- with LP, allocate ρ fractional items such that $t = \min_{\text{agents } i \neq j} u_i(A_i) - u_i(A_j) \text{ is maximized.}$

- randomly round this fractional allocation.
- allocate remaining items using round robin.

for $\rho = 1, 2, 4, ..., m$:

- with LP, allocate ρ fractional items such that $t = \min_{\text{agents } i \neq j} u_i(A_i) - u_i(A_j) \text{ is maximized.}$

- randomly round this fractional allocation.
- allocate remaining items using round robin.

for $\rho = 1, 2, 4, ..., m$:

- with LP, allocate ρ fractional items such that $t = \min_{\text{agents } i \neq j} u_i(A_i) - u_i(A_j) \text{ is maximized.}$

- randomly round this fractional allocation.
- allocate remaining items using round robin.

for $\rho = 1, 2, 4, ..., m$:

- with LP, allocate ρ fractional items such that $t = \min_{\text{agents } i \neq j} u_i(A_i) - u_i(A_j) \text{ is maximized.}$

- randomly round this fractional allocation.
- allocate remaining items using round robin.

for $\rho = 1, 2, 4, ..., m$:

- with LP, allocate ρ fractional items such that $t = \min_{\substack{agents \ i \neq j}} u_i(A_i) - u_i(A_j)$ is maximized.

- randomly round this fractional allocation.
- allocate remaining items using round robin.
- if EF, return, else continue loop.

for $\rho = 1, 2, 4, ..., m$:

- with LP, allocate ρ fractional items such that $t = \min_{\text{agents } i \neq j} u_i(A_i) - u_i(A_j) \text{ is maximized.}$

- randomly round this fractional allocation.
- allocate remaining items using round robin.
- if EF, return, else continue loop.

Theorem. If $m \gg n \log n$ and $p \gg \log n/m$, our poly-time algorithm finds envy-free allocations in the smoothed model with probability $\rightarrow 1$.

n: number of agents *m*: number of items *p*: boost probability

Theorem. If $m \gg n \log n$ and $p \gg \log n/m$, our poly-time algorithm finds envy-free allocations in the smoothed model with probability $\rightarrow 1$.

+ bound on *p* is tight

n: number of agents *m*: number of items *p*: boost probability

Theorem. If $m \gg n \log n$ and $p \gg \log n/m$, our poly-time algorithm finds envy-free allocations in the smoothed model with probability $\rightarrow 1$.

+ bound on *p* is tight + even at $p = m^{0.33}/m$, round robin doesn't guarantee envy-freeness

n: number of agents *m*: number of items *p*: boost probability

Theorem. If $m \gg n \log n$ and $p \gg \log n/m$, our poly-time algorithm finds envy-free allocations in the smoothed model with probability $\rightarrow 1$.

+ bound on *p* is tight + even at $p = m^{0.33}/m$, round robin doesn't guarantee envy-freeness

Theorem. If $m \gg n \log n$ and $p \gg \log n/m$, another algorithm finds Pareto-optimal and proportional allocations with probability $\rightarrow 1$.

n: number of agents *m*: number of items *p*: boost probability

Theorem. If $m \gg n \log n$ and $p \gg \log n/m$, our poly-time algorithm finds envy-free allocations in the smoothed model with probability $\rightarrow 1$.

+ bound on *p* is tight + even at $p = m^{0.33}/m$, round robin doesn't guarantee envy-freeness

Theorem. If $m \gg n \log n$ and $p \gg \log n/m$, another algorithm finds Pareto-optimal and proportional allocations with probability $\rightarrow 1$.

n: number of agents *m*: number of items *p*: boost probability

Check out our paper! tinyurl.com/smoothEF

