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In This Apportionment Lottery, 
the House Always Wins
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Elegant mathematics & political drama.
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Axioms Satisfied by Grimmett’s Method

Grimmett, G. Stochastic Apportionment. 
Am. Math. Mon. 111, 299–307 (2004).

Ex-Ante Proportionality: State’s expected 
number of seats equals its proportional share. 

Quota (ex post).
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Essentially, ex-ante proportionality & quota ⟺ 
probability proportional to size sampling (πps):

Axioms Leave Too Many Candidates

Brewer, K. R. W. & Hanif, M. Sampling with 
Unequal Probabilities. (Springer, 1983).
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Our Definition of a Method

Grimmett, G. Stochastic Apportionment. 
Am. Math. Mon. 111, 299–307 (2004).
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- Characterization of quota + house monotone 
solutions as vertices of matching polytope.

- House-monotone apportionment = picking 
sequences for weighted fair division. Quota 
implies WPROP1 [CSS21].
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Check out our paper! 
tinyurl.com/randomseat


