In This Apportionment Lottery, the House Always Wins

Paul Gölz, Dominik Peters & Ariel Procaccia

CNIS

Deterministic Apportionment

legislature

Deterministic Apportionment

state populations

(1000, 1000, 1000)

legislature

Deterministic Apportionment

state populations

(1000, 1000, 1000)

legislature

(33, 33, 34)

apportionment solution

Axioms of Deterministic Apportionment

Quota: State's number of seats is floor or ceiling of its proportional share.

House monotonicity: If house size h increases, no state loses seats.

Population monotonicity.

Axioms of Deterministic Apportionment

Quota: State's number of seats is floor or ceiling of its proportional share.

no state loses seats.

Population monotonicity.

Elegant mathematics & political drama.

House monotonicity: If house size h increases,

Randomized Apportionment [Grimmett04]

h = 100

Grimmett, G. Stochastic Apportionment. Am. Math. Mon. 111, 299–307 (2004).

Axioms Satisfied by Grimmett's Method

Ex-Ante Proportionality: State's expected number of seats equals its proportional share.

Quota (ex post).

Grimmett, G. Stochastic Apportionment. Am. Math. Mon. 111, 299–307 (2004).

Axioms Leave Too Many Candidates

Essentially, ex-ante proportionality & quota \Leftrightarrow probability proportional to size sampling (π ps):

The following is a list of 50 mpswor procedures. A each. and a basic reference is given. Descriptions

Procedure	¥;	Random Systematic Procedure; Goodman and Kish (1950).
Procedure	3:	Grundy's Systematic Procedure: Grundy (1954).
Procedure	4:	Yates-Grundy Draw-by-Draw Procedure; Yates and Grundy
		(1953).
Procedure	51	Yates-Grundy Rejective Procedure; Yates and Grundy
		(1953).
Freedure	6:	Midsuno's Procedure; reported by Morvitz and Thompson
		(1952).
Procedure	7:	Narain's Procedure; Narain (1951).
Procedure	8:	Brever's Procedure; Brewer (1963, 1975).
Procedure	9:	Durbin's "Method I"; Durbin (1967).
Procedure	10:	Durbin's "Grouped Method"; Durbin (1957).
Procedure	11:	Rac-Sampford Procedure; Rac (1965), Sampford (1967).
Procedure	12:	Durbin-Sampford Procedure; Sampford (1967).
Procedure	13:	Fellegi's Procedure; Fellegi (1963).
Procedure	1*:	Carroll-Hartley Rejective Procedure; Carroll and Hartley
		(1984).
Procedure	15:	Carroll-Hartley Draw-by-Draw Procedure; Carroll and Eartley
		[1964).
Procedure	16:	Corroll-Hartley Whole Sample Procedure; Carroll and Hartley
		(1964).
Procedure	17:	Durbin-Hanurav Procedure; Durbin (1953b); Hanurav (1956,
		1967),
Procedure	18:	Hanurav's Scheme B-A'; Hanurav (1967).
Procedure	19:	Hamurav-Vijayan Erocedure; Hamurav (1967); Vijayan (1968).
Procedure	20:	Raj's Variance Minimization Procedure: Raj (1956b).
Procedure	21:	Hanurav's Simple Junctional Procedure; Hanurav (1962a).
Procedure	22:	Hanurav's Modifled Junctional Procedure; Hanurav (1962a),
Procedure	23:	Hanuray's Double Junctional Procedure; Hanuray (1962a).

Ordered Systematic Procedure; Madow (

Procedure 24:	Hanuray's Sequential Procedure; Hanuray (1962a),
Procedure 25:	Sao-Hartley-Cochran Procedure; Rao, Hartley and C
	(1962).
Procedure 25:	Stevens' Procedure; Stevens (1958).
Procedure 27:	Poisson Sampling; Hajek (1964b).
Procedure 28:	Hajek's "Method I"; Hajek (1964b).
Procedure 29:	Hajek's "Method II"; Hajek (1964b).
Procedure 30:	Hajek's "Method III"; Hajek (1964b).
Procedure 31:	Eajek's "Method IV"; Hajek (1964b).
Procedume 32:	Dening's Systematic Procedure; Deming (1960).
Procedure 33:	Variance Estimator Optimization Procedure; Brever
	Kamif (1965a).
Procedure 34:	Jessen's "Method 1"; Jessen (1969).
Procedure 35:	Jessen's "Method 2"; Jessen (1969).
Procedure 36:	Jessen's "Method 3"; Jessen (1969).
Procedure 37:	Jessen's "Method 4"; Jessen (1969).
Procedure 38:	Modified Poisson Sampling; Ogus and Clark (1971).
Procedure 39:	Collocated Sampling; Brewer, Early and Hamif (1986
Procedure 40:	Das-Mohanty Procedure; Das and Mohanty (1973).
Procedure 41:	Eukhopadhyay's Procedure; Eukhopadhyay (1972).
Procedure 42:	Sinha's Extension Procedure; Sinha (1973).
Procedure 43:	Sinha's Reduction Procedure: Sinha (1973).
Procedure 44;	Chaudhuri's Procedure; Chaudhuri (1976).
Procedure 45:	Lahiri's Procedure; Lahiri (1951).
Procedure 46:	Ikeda-Midtuno Procedure; Midzune (1952).
Procedure 47:	Fuller's "Scheme B"; Fuller (1971).
Procedure 48:	Singh's Procedure; Singh (1978).
Procedure 49:	Choudhry's Procedure; Choudhry (1979).
Procedure 50;	Chrony's Precedure; Chrony (1979).

Brewer, K. R. W. & Hanif, M. Sampling with Unequal Probabilities. (Springer, 1983).

Cochran e and .

Grimmett's Definition of a Method

h = 100

Grimmett, G. Stochastic Apportionment. Am. Math. Mon. 111, 299–307 (2004).

Our Definition of a Method

Grimmett, G. Stochastic Apportionment. Am. Math. Mon. 111, 299–307 (2004).

ex-ante proportionality

quota

house monotonicity

Still, J. W. A Class of New Methods for Congressional Apportionment. *SIAM J. Appl. Math.* 37, 401–418 (1979).

ex-ante proportionality

прs sampling

quota

house monotonicity

Still, J. W. A Class of New Methods for Congressional Apportionment. *SIAM J. Appl. Math.* 37, 401–418 (1979).

ex-ante proportionality

прs sampling

quota

deterministic apportionment [Still79]

house monotonicity

Still, J. W. A Class of New Methods for Congressional Apportionment. *SIAM J. Appl. Math.* 37, 401–418 (1979).

прs sampling

quota

deterministic apportionment [Still79]

ex-ante proportionality

sampling with replacement

house monotonicity

> Still, J. W. A Class of New Methods for Congressional Apportionment. *SIAM J. Appl. Math.* 37, 401–418 (1979).

h = 1 brown: 60%, orange: 30%, beige: 10%

h=2

brown: 60%, orange: 30%, beige: 10%

brown: 60%, orange: 30%, beige: 10%

h = 1 brown: 60%, orange: 30%, beige: 10%

h=2

h = 3

brown: 60%, orange: 30%, beige: 10%

brown: 60%, orange: 30%, beige: 10%

h = 1 brown: 60%, orange: 30%, beige: 10% (0, 1, 0)

h=2

h = 3

brown: 60%, orange: 30%, beige: 10% (0, 2, 0)

brown: 60%, orange: 30%, beige: 10% (1, 2, 0)

h = 1 brown: 60%, orange: 30%, beige: 10% (0, 1, 0)

house mono.

h=2

h = 3

brown: 60%, orange: 30%, beige: 10% (0, 2, 0)

brown: 60%, orange: 30%, beige: 10% (1, 2, 0)

house mono. 🗸 h=2ex-ante prop. 🗸

$$h = 3$$
 brown: 6

h = 1 brown: 60%, orange: 30%, beige: 10% (0, 1, 0)

brown: 60%, orange: 30%, beige: 10% (0, 2, 0)

60%, orange: 30%, beige: 10% (1, 2, 0)

house mono. 🗸 h=2ex-ante prop. 🗸 quota 🗙

h = 1 brown: 60%, orange: 30%, beige: 10% (0, 1, 0)

brown: 60%, orange: 30%, beige: 10% (0, 2, 0)

brown: 60%, orange: 30%, beige: 10% (1, 2, 0)

house mono. 🗸

h = 3

h = 1

brown: 60%, orange: 30%, beige: 10% (0, 1, 0) brown: 60%, orange: 30%, beige: 10% (0, 2, 0) brown: 60%, orange: 30%, beige: 10% (1, 2, 0)

Correlating the Randomness Across Seats h = 10 0.6 0.3 30 60 $h = 2 \bigcirc 0.6 \\ 0.3$ $h = 3 \bigcirc 0.3 \\ 0.1$

house mono. ex-ante prop. 🔽

What Else Is This Good for?

Chakraborty, M., Schmidt-Kraepelin, U. & Suksompong, W. Picking sequences and monotonicity in weighted fair division. *Artif. Intell.* 301, 103578 (2021).

What Else Is This Good for?

- Characterization of quota + house monotone solutions as vertices of matching polytope.

Chakraborty, M., Schmidt-Kraepelin, U. & Suksompong, W. Picking sequences and monotonicity in weighted fair division. Artif. Intell. 301, 103578 (2021).

What Else Is This Good for?

- Characterization of quota + house monotone solutions as vertices of matching polytope. - House-monotone apportionment = picking sequences for weighted fair division. Quota

implies WPROP1 [CSS21].

Chakraborty, M., Schmidt-Kraepelin, U. & Suksompong, W. Picking sequences and monotonicity in weighted fair division. Artif. Intell. 301, 103578 (2021).

Pipage rounding [GKP+06]:

Pipage rounding [GKP+06]:

- marginal distribution

Pipage rounding [GKP+06]:

- marginal distribution

Pipage rounding [GKP+06]:

- marginal distribution

degree preservation

Pipage rounding [GKP+06]:

- marginal distribution

degree preservation

Pipage rounding [GKP+06]:

- marginal distribution

- degree preservation $(1/4)^{1/2}$ $(1/2)^{1/2}$

Pipage rounding [GKP+06]:

- marginal distribution

degree preservation

negative correlation

- marginal distribution

degree preservation

negative correlation

- new: cumulative degree preservation

Pipage rounding with "cumulative rounding":

- marginal distribution

- degree preservation

- negative correlation

- new: cumulative degree preservation

Pipage rounding with "cumulative rounding":

- marginal distribution

- degree preservation

negative correlation

- new: cumulative degree preservation

Pipage rounding with "cumulative rounding":

- $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ • •

 \bullet \bullet \bullet \bullet

- ex-ante prop. + quota + house monotonicity

- ex-ante prop. + quota + house monotonicity - cumulative rounding

- ex-ante prop. + quota + house monotonicity - cumulative rounding - more results for population monotonicity

- ex-ante prop. + quota + house monotonicity - cumulative rounding - more results for population monotonicity

Future work: Other axioms for randomized apportionment, e.g.: if states S grow and others shrink, probability of S all rounded up should increase.

- ex-ante prop. + quota + house monotonicity - cumulative rounding - more results for population monotonicity

Future work: Other axioms for randomized apportionment, e.g.: if states S grow and others shrink, probability of S all rounded up should increase.

Check out our paper! tinyurl.com/randomseat

