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Abstract

We study the fair allocation of indivisible goods with variable
groups. In this model, the goal is to partition the agents into
groups of given sizes and allocate the goods to the groups in a
fair manner. We show that for any number of groups and cor-
responding sizes, there always exists an envy-free up to one
good (EF1) outcome, thereby generalizing an important re-
sult from the individual setting. Our result holds for arbitrary
monotonic utilities and comes with an efficient algorithm. We
also prove that an EF1 outcome is guaranteed to exist even
when the goods lie on a path and each group must receive
a connected bundle. In addition, we consider a probabilistic
model where the utilities are additive and drawn randomly
from a distribution. We show that if there are n agents, the
number of goods m is divisible by the number of groups k,
and all groups have the same size, then an envy-free outcome
exists with high probability if m = w(logn), and this bound
is tight. On the other hand, if m is not divisible by k, then an
envy-free outcome is unlikely to exist as long as m = o(y/n).

1 Introduction

Fairly allocating limited resources is a fundamental so-
cietal challenge, with applications ranging from dividing
household supplies among families to distributing person-
nel among schools or other public institutions. The prob-
lem of fair division has accordingly received interest in sev-
eral disciplines, including in computational social choice
and multi-agent systems (Bouveret, Chevaleyre, and Maudet
2016; Markakis 2017; Aziz 2020; Walsh 2020).

Most of the work in fair division assumes that each re-
cipient of a bundle of resources is an individual agent, rep-
resented by a single preference. However, when distributing
resources among families, schools, or institutions, each re-
cipient in fact consists of multiple agents. Although these
agents share the same set of resources and derive full value
from the resources in their set, they may have differing pref-
erences over the resources. This has motivated several re-
searchers to study the (fixed-)group model, where the agents
are partitioned into groups and the aim is to allocate the
resources in a fair manner among the groups (Manurangsi
and Suksompong 2017, 2025b; Ghodsi et al. 2018; Segal-
Halevi and Nitzan 2019; Kyropoulou, Suksompong, and
Voudouris 2020; Segal-Halevi and Suksompong 2023; Cara-
giannis, Larsen, and Shyam 2025; G6lz and Yaghoubizade

2026; Manurangsi and Meka 2026). For instance, Manu-
rangsi and Suksompong (2022) investigated the notion of
envy-freeness up to c goods (EFc). This means that no agent
would prefer another group’s bundle over her own group’s
if some set of at most ¢ goods were removed from the other
group’s bundle. Manurangsi and Suksompong proved that
when the number of groups is constant, there exists an EFc
allocation for ¢ = O(+/n), where n denotes the total number
of agents, and this bound is also asymptotically tight.

The fixed-group model is appropriate when membership
in the groups is predetermined, as in the allocation among
families or countries. In other applications, however, the re-
source allocator can select the partition of agents into groups
alongside the allocation. This is the case, for example, when
dividing workers in an organization into teams and assigning
resources to these teams. In light of this, Kyropoulou, Suk-
sompong, and Voudouris (2020, Sec. 5) proposed a variable-
group model, in which a partition of the agents into groups
can be chosen along with an allocation of the resources.!

When the resources consist of divisible items such as
time, Segal-Halevi and Suksompong (2021) proved that
an envy-free outcome always exists in the variable-group
model. On the other hand, if the resources contain indivis-
ible items such as books or gym equipment, Kyropoulou,
Suksompong, and Voudouris (2020) showed that an EF1
outcome can be ensured in the case of two groups, and an
outcome satisfying a relaxation of proportionality—which
is fundamentally weaker than EF1—can be satisfied for any
number of groups. This differs from the fixed-group model,
where even for two groups, the optimal EFc guarantee dete-
riorates as the number of agents grows.

In this paper, we expand and deepen our understanding
of fairness, particularly envy-freeness, when allocating in-
divisible goods in the variable-group model. For instance,
we study the following question: does an EF1 outcome exist
for any number of groups and any corresponding sizes, or is
it sometimes necessary to relax the notion to EFc for some
(possibly non-constant) c? As we shall see, the flexibility
provided by this model enables remarkably strong fairness
guarantees to be made.

"For further motivation of the variable-group model, we refer
to the papers by Kyropoulou, Suksompong, and Voudouris (2020)
and Segal-Halevi and Suksompong (2021).



1.1 Our Results

In Section 3, we answer the question above in the positive:
for any desired group sizes, an EF1 outcome exists and,
moreover, can be computed efficiently (Theorem 1). This
result holds even for arbitrary monotonic utilities, and sig-
nificantly generalizes the well-known result by Lipton et al.
(2004) that EF1 allocations always exist in the individual
setting where each group has size one. Our algorithm is a
careful extension of Lipton et al.’s classic envy cycle elim-
ination algorithm. This positive result stands in contrast to
the fixed-group setting, where ¢ = Q(y/n) is required to
guarantee the existence of an EFc allocation (Manurangsi
and Suksompong 2022).

In Section 4, we strengthen the previous result by show-
ing that, if the goods lie on a path, EF1 allocations exist even
when each group must receive a connected bundle (Theo-
rem 2). The connectivity requirement is natural when the
goods correspond to time slots or offices along a corridor,
and has been studied in several papers (Bouveret et al. 2017;
Bei et al. 2022; Bilo et al. 2022; Igarashi 2023). This exis-
tence result also holds for monotonic utilities, and general-
izes results from the individual setting by Bilo et al. (2022)
and Igarashi (2023). However, like in the individual setting,
the result does not come with an efficient algorithm.

Finally, in Section 5, we consider a probabilistic model
where the utilities are additive and each agent’s utility for
each good is drawn independently at random from a non-
atomic distribution.? We are interested in when an envy-free?
outcome exists with high probability (that is, with probabil-
ity approaching 1 as the number of agents n grows), assum-
ing that the number of groups k is fixed and all groups have
the same size. Interestingly, we show that the existence de-
pends on whether the number of goods m is divisible by k.
On the one hand, if m is divisible by k, the transition oc-
curs at merely O(logn): an envy-free outcome is unlikely
to exist if m = o(logn) (Theorem 3), but likely to exist if
m = w(logn) (Theorem 4). On the other hand, if m is not
divisible by k, such an outcome is unlikely to exist as long
as m = o(y/n) (Theorem 5).*

1.2 Further Related Work

As mentioned earlier, a number of authors have investigated
fair division among groups, mostly focusing on the fixed-
group model. Besides envy-freeness, Manurangsi and Suk-
sompong (2022) also obtained bounds on proportionality
as well as consensus 1/k-division—the latter is even more
stringent than envy-freeness, as it requires agents to value all
bundles of goods equally. While these bounds were already
tight in terms of n, Caragiannis, Larsen, and Shyam (2025)
and Manurangsi and Meka (2026) recently improved their

2A distribution is called non-atomic if it does not put a positive
probability on any single point.

3Envy-freeness corresponds to EFc for ¢ = 0. An envy-free
outcome does not always exist, e.g., when there are two groups and
only one valuable good.

“In contrast, a result in the fixed-group setting by Manurangsi
and Suksompong (2017) implies that an envy-free outcome is
likely to exist when m = Q(nlogn).

dependence on k. Bu et al. (2023), Barman et al. (2025),
as well as Kawase, Roy, and Sanpui (2025) studied settings
that can be interpreted as special cases of the fixed-group
model. For example, Bu et al.’s setting corresponds to the
fixed-group model when each group has size two.

The probabilistic model we consider in Section 5 falls un-
der the framework of asymptotic fair division. This frame-
work was introduced by Dickerson et al. (2014) and sub-
sequently studied in several papers (Kurokawa, Procaccia,
and Wang 2016; Suksompong 2016; Manurangsi and Suk-
sompong 2020, 2021, 2025a; Bai and Go6lz 2022; Bai et al.
2022; Benade et al. 2024; Manurangsi, Suksompong, and
Yokoyama 2025; Yokoyama and Igarashi 2025). The moti-
vation is that, since an allocation satisfying envy-freeness (or
some other fairness notion) does not always exist, it is natu-
ral to ask when an envy-free allocation is likely to exist if the
utilities are drawn at random. We highlight two relations be-
tween our results and known results from this line of work.
Firstly, Manurangsi and Suksompong (2017) examined the
fixed-group model and showed that an envy-free allocation
is unlikely to exist unless m = Q(n). This contrasts with
our results, which show that existence is already likely in
the variable-group model when m = w(logn). Secondly, in
the individual setting, Manurangsi and Suksompong (2020,
2021) proved that the threshold for the existence of envy-
free allocations differs according to whether m is divisible
by n. However, the (multiplicative) gap in their case is only
logarithmic (i.e., ©(n) vs. ©(nlogn/loglogn)), whereas
our gap is much larger (i.e., ©(log n) vs. Q(v/n)).

2 Preliminaries

For any positive integer ¢, let [t] := {1,2,...,t}. Letk > 2
and ny,...,n, be positive integers, N = [n] be a set of
n = ni + --- + ng agents, and M = [m] be a set of m
goods. A bundle refers to a (possibly empty) set of goods.
Each agent ¢ € N has a utility function u, over the sets of
goods in M for a single good g € M, we sometimes write
uq(g) instead of u,({g}). We assume that the utilities are
monotonic, meaning that ug (M') < u,(M") forany a € N
and M’ C M" C M, and normalized, i.e., u,(0) = 0.
The utilities are called additive if uq (M') = 3_ < ta(9)-
When utilities are non-additive, we assume that an algorithm
can query any agent’s utility for any set of goods in constant
time. An instance in the variable-group model consists of
the set of agents IV, the set of goods M, the agents’ utility
functions, and the desired group sizes ni, ..., ng.

We would like to partition the n agents into k groups
Cq,...,Cy of sizes nq,...,ny, respectively, and allo-
cate the m goods among these groups. We write C' =
(C1,...,Ck). An allocation A = (Ay, ..., Ay) consists of
k disjoint bundles, where bundle A; is allocated to the i-th
group; it is called complete if A; U ---U Ay, = M. An out-
come consists of a partition of agents C' along with a com-
plete allocation of goods A. An outcome (C, A) is

* envy-free up to c goods (EFc), for a given non-negative
integer ¢, if for every 7,5 € [k] and every agent a €
C;, there exists a set B C A; with |[B| < ¢ such that
uq(A;) 2 ua(A4; \ B);



e envy-free if it is EFOQ.

The individual setting refers to a special case of this model
where n; = - - - = n; = 1 (and therefore k = n).

3 EF1: Existence and Computation

Recall that in the individual setting, a classic result of Lip-
ton et al. (2004) states that for any instance with arbitrary
monotonic utilities, an EF1 allocation exists. Moreover, such
an allocation can be found in time O(mn?) via the envy
cycle elimination algorithm. Intuitively, this algorithm allo-
cates one good at a time in an arbitrary order. The algorithm
maintains an “envy graph”, which is a directed graph that
captures the envy relations among the agents. In particular,
the vertices represent the agents, and there is an edge from
one agent to another agent if and only if the former agent
envies the latter agent. Hence, an agent is unenvied exactly
when the corresponding vertex has no incoming edge. Each
good is assigned to an unenvied agent, and if the assignment
causes a cycle to be formed in the envy graph, the cycle is
eliminated by giving each agent’s bundle to the preceding
agent on the cycle. Once all cycles have been eliminated, the
next good can be assigned to an unenvied agent, and EF1 is
maintained throughout the algorithm.

A priori, it may appear that the envy cycle elimination al-
gorithm is not well-suited for the group setting. Indeed, it
is unclear when a group should be considered to “envy” an-
other group, as different agents in the same group may have
differing opinions about the groups’ bundles. Nevertheless,
we show that adopting an alternative perspective on the al-
gorithm allows for its generalization to the group setting.
Specifically, instead of moving the bundles as in the typi-
cal interpretation, we can reinterpret the envy cycle elimi-
nation step as moving the agents along the cycles instead.
This interpretation enables a generalization of the algorithm
to accommodate groups, as it permits the reassignment of
individual agents according to their envy relations while pre-
serving group sizes, thereby leveraging the flexibility of the
variable-group model. In addition to extending the seminal
result of Lipton et al. (2004), the following theorem also
strengthens a variable-group guarantee due to Kyropoulou,
Suksompong, and Voudouris (2020, Thm. 5.6), which holds
under additive utilities for a much weaker notion than EF1.

Theorem 1. For any instance with arbitrary monotonic util-
ities, there exists an EF1 outcome. Moreover, such an out-
come can be computed in time O(mn3).

Proof. We use the following generalization of the envy cy-
cle elimination algorithm.

1. Let C be an arbitrary partition of the n agents into groups
of sizes nq, ..., ng, and let A be an empty allocation.

2. Construct an envy graph, which is a directed graph with
the k groups as the vertices; this graph will be updated as
the algorithm proceeds. For each agent, add an edge from
the agent’s group to another group if the agent envies the
latter group. (Thus, the graph initially contains no edges.)
In particular, there can be multiple edges from one vertex
to another vertex.

3. Take an arbitrary unallocated good, and allocate it to any
group with no incoming edge in the envy graph. Update
the envy graph.

4. If there is at least one directed cycle in the envy graph,
consider an arbitrary cycle. For each edge in the cycle,
move the agent associated with this edge to the group
that the agent envies. Update the envy graph. If there is
still a directed cycle in the envy graph, repeat this step.

5. If there is still an unallocated good, go back to Step 3.
Otherwise, output the current outcome (C, A).

We first show that the algorithm outputs a valid outcome.
To this end, we prove that each time we eliminate a cycle
in Step 4, the number of edges in the envy graph decreases.
For each agent not associated with an edge in the cycle, the
agent’s own bundle as well as all other bundles remain the
same, so the number of envy edges from the agent also re-
mains the same. On the other hand, for each agent associated
with an edge in the cycle, the agent is assigned to a better
bundle in her view among the & bundles, so the number of
envy edges from the agent decreases by at least one. Hence,
the total number of envy edges decreases, which means that
the process of eliminating cycles must terminate. When the
envy graph contains no cycle, there must exist a vertex with
no incoming edge, and we can allocate the next good to
the corresponding group. It follows that all goods are allo-
cated. Moreover, the sizes of the k groups remain ny, ..., ng
throughout, so the algorithm outputs a valid outcome.

Next, we show that the outcome returned by the algorithm
is EF1. Specifically, we prove that at every point during the
execution of the algorithm, the partition C' and the (possibly
incomplete) allocation A together yield EF1. This is true at
the beginning of the algorithm, as the allocation is empty.
When a good is allocated, it is allocated to a group with no
incoming edge, so any envy towards the group can be elim-
inated by removing this good. Moreover, when a cycle is
eliminated, for each agent not associated with an edge in the
cycle, the agent’s own bundle as well as all other bundles
remain the same, so the EF1 invariant is maintained. On the
other hand, for each agent associated with an edge in the
cycle, the agent is assigned to a better bundle in her view
among the k bundles. Since any envy that the agent has to-
wards another bundle can be eliminated by removing a good
from the bundle before, the same remains true afterwards,
and the EF1 invariant is again maintained.

Finally, we analyze the running time of the algorithm.
There are m allocated goods, and each allocated good in-
creases the number of envy edges by at most n. Finding and
eliminating a directed cycle can be done in time O(k?), and
the elimination decreases the number of envy edges by at
least one. As the algorithm can query any agent’s utility for
any set of goods in constant time, updating the envy graph
takes time O(nk). Since k < n, the algorithm runs in time
O(mn3). O

4 EF1: Adding Connectivity Constraints

Having established the general existence of EF1 outcomes,
in this section, we impose an additional requirement in the
form of connectivity. Specifically, we assume that the goods



lie on a path 1,2, ..., m. An allocation A is said to be con-
nected if A; forms an interval on the path for each j € [k].
An outcome (C, A) is called connected if A is connected.

In the individual setting, Igarashi (2023) proved that a
connected EF1 allocation is guaranteed to exist, thereby
strengthening an earlier result of Bilo et al. (2022), which
holds for EF2. For their proofs, Bilo et al. and Igarashi de-
veloped a discretization approach using Sperner’s lemma
(Sperner 1928). This idea was originally due to Su (1999),
who provided an elegant proof that an envy-free allocation
of a cake (i.e., a heterogeneous divisible good) always ex-
ists. Su’s proof encodes possible divisions as points in the
standard simplex and employs a triangulation of the simplex
along with a coloring of each vertex of the triangulation. By
applying Sperner’s lemma, Su showed the existence of an
elementary simplex (i.e., a simplex not composed of smaller
simplices in the triangulation) whose vertices correspond to
allocations that are similar to one another, where each allo-
cation ensures that a different agent is envy-free. An infinite
sequence of such simplices, with their sizes progressively
shrinking, converges to an envy-free allocation.

Our main result of this section generalizes the results of
Bilo et al. (2022) and Igarashi (2023) to the group setting.
The result is formally stated as follows.

Theorem 2. For any instance with arbitrary monotonic util-
ities such that the goods lie on a path, there exists a con-
nected EF1 outcome.

Note that unlike Theorem 1, this theorem does not come
with efficient computation. Indeed, the question of whether
a connected EF1 allocation can be computed efficiently is
open even in the individual setting (Igarashi 2023).

We start by recalling some basic notions of combinatorial
topology. For any positive integer k, a (k — 1)-simplex S is
the convex hull of k main vertices x1,Xa, ..., X;. We use
the notation S' = (x1,X3,...,Xg). The (k — 1)-standard
simplex A*~1 is the (k — 1)-simplex whose main vertices
are given by the j-th unit vectors e’ € {0,1}* for j € [k],
where e} = 1if h = j and e], = 0 otherwise.

A triangulation T of a (k—1)-simplex S is a collection of
smaller (k — 1)-simplices S, S, . . ., Sy such that the union
of simplices S; for j € [h] is S, and for each ¢ # j, the
intersection S; N S; is either empty or a face common to S;
and S;. We call S1,55,...,Sh elementary simplices, and
write V(T) for the set of vertices of a triangulation T.

For a triangulation T of a (k — 1)-simplex S, a coloring
is a mapping A: V(T) — [k] that assigns a color in [£] to
each vertex x € V(T). A coloring ) is called proper if we
can write S = (x1,Xa, ..., X)) in such a way that if a vertex
x € V(T) is colored with color j (i.e., j = A(x)), then x;
is a vertex of the minimal face containing x. For example, if
k = 3, then a (k — 1)-simplex can be viewed as a triangle.
In a proper coloring of the simplex, the three main vertices
X1, X9, X3 are colored 1,2, 3, respectively, and each vertex
x on an edge between x; and x; is colored either 7 or j.

In our proof, the space of connected allocations is en-
coded by the positions of £ — 1 “knives”. Like Bilo et al.
(2022) and Igarashi (2023), we consider a triangulation of
this space, where each knife is at either a vertex or an edge

of the path. More precisely, consider the following simplex:

S 1= {X e RF!

1 1
ifl‘lg"'gxk—l Sm+2}.

Let Ty be a Kuhn's triangulation of S, (Deng, Qi, and
Saberi 2012; Bilo et al. 2022; Igarashi 2023). The vertices
of this triangulation are given by

1 1
x16{2,1,,m+2},V2},

where each elementary simplex S = (x1,Xa,...,Xg) of
Thait satisfies the property that there exists a permutation
¢ [k] = [k] such that X4(; 1) = Xp(;) + 5€??) for each i €
[k — 1]. Each vertex x € V(Thar) yields a partial alloca-
tion A(x) = (A1(x), A2(x),. .., Ai(x)) such that for each
J € [k], the j-th bundle is given by

V(Thalf) = {X S Sm

Aj(x) = {y € [m] [ zj1 <y <},

withzg = 1 and 2, = m + 1.

With appropriate coloring and rounding, Igarashi (2023)
demonstrated that a desired elementary simplex, guaranteed
by Sperner’s lemma, can be rounded to produce a connected
EF1 allocation. The proof relies on the notion of a virtual
utility, i, (x, j), defined for each vertex x of the triangula-
tion and each index j € [k]. This virtual utility determines
agent a’s most preferred bundle in a partial allocation cor-
responding to the vertex x; in particular, ,(x,j) = 0 if
Aj(x) = 0, and 4,(x,j) > 0 otherwise. Igarashi (2023,
Alg. 1) presented an algorithm that, given an elementary
simplex S = (x1,Xg,...,Xg) of Thayr, produces an allo-
cation A = (A1, As, ..., Ay) with the following property:
each agent’s estimate of the j-th bundle based on the vir-
tual utility is upper-bounded by her true utility of A; and
lower-bounded by the her “up-to-one utility” of A;, as de-
fined next. For any connected subset of goods I, the up-to-
one utility u; (I) of agent a is defined as

0 it 1 =0
ug (I) = ¢ min {ua(I'\{g}) [g €I
such that I \ {g} is connected} if I # 0.

The following lemma is stated as Lemma 3.2 in the work
of Igarashi (2023).

Lemma 1 (Igarashi 2023). Consider the triangulation Ty ¢
of Sy, There exists an algorithm that, given any elementary
simplex S = (X1,Xa,...,Xk) of Thalt, returns a connected
allocation (A1, As, ..., Ay) such that for every agent a €
N and every pair of indices i,j € [k]|, we have u,(A;) >
o (x4, J) = ug (4;).

Our main lemma of this section is as follows.

Lemma 2. Let Ay, ..., A, : V(Tras) — [k] be any proper
colorings. Then, there exist an elementary simplex S* =
(x3,%5,...,%5) of Thaie and m : N — [k] such that

1. |7=1(i)| = n, for each i € [k], and

3 Although Igarashi’s Lemma 3.2 is stated for the case k = n,
the same proof also works when k # n.



2. (a) € {\a(x}) | h € [k]} for eacha € N.

To establish Lemma 2, we will use the following result
shown by Igarashi and Meunier (2025) as Lemma 4 in their
work. We state a simplified version of their lemma below.

Lemma 3 (Igarashi and Meunier 2025). Consider a bipar-
tite graph H = (N, [k]; E) together with non-negative edge
weights (w.)eck- Let 6 (v) denote the set of edges incident
to vertex v in H. Suppose that the following holds:

Z we =1 Va € N;
e€dp(a)

Z We = Ny Vi € [k].
€€ (4)

Then, there exists an assignment 7 : N — [k| such that

1. |77 1(i)| = n; for each i € [k], and

2. (a,7m(a)) € E for eacha € N.

Proof of Lemma 2. Foreach a € N and x € V(Tpa), we
define f(%)(x) = e*«(¥), We then extend it in an affine man-
ner to ?(a) S, — AF~1 as follows. For each x € S,,, let

S = (x1,...,Xx) be any elementary simplex of Ty,,)r con-
taining it. Then, write x = Zhe[k] oapXp,, and let

7(0’) a
7900 = 3 anf@(xn).
helk]
The affine extension on each simplex yields a continuous

function on the entire S, since adjacent simplices share
faces and vertex values agree on those faces. Finally, we de-

fine f : S,,, — AF~! by letting

T =237

aeN

Vx € Sp.

It can be shown that f is surjective. We defer the full proof
of this fact to . Appendix A (see also, e.g., Meunier and Su
2019). Since f is surjective, there exists x* € S,,, such that

_ Nn;
T =" ie (K
Let S* = (x],x3,...,x}) be any elementary simplex of

Thait containing x*. We define the graph H = (N, [k]; E)
as follows:

* (a,i) € E if and only if f(a) (x*); > 0, and
_ ),
* W =f (X

By definition, we have

S owe=YT7"«)=1 VaeN
e€du(a) i€ k]
and
S owe =S 7 = Fx) =g Vi k.
e€dm (1) a€eN

SWe only state the case where the numbers n; are integers, but
their original lemma handles the non-integer case too.

Thus, we can apply Lemma 3 to obtain 7 : N — [k] sat-
isfying the two conditions of the lemma. The first condi-
tion of Lemma 3 ensures the first condition of Lemma 2.
Furthermore, the second condition of Lemma 3 states that
(a,m(a)) € E for every a € N. By definition of H, this

implies that T(a) (X*)x(a) > 0. By definition of f(a), this in
turn ensures that 7(a) = A, (x}) for some h € [k]. Hence,
the second condition of Lemma 2 is also satisfied. [

We now show how to use Lemma 2 to prove Theorem 2.

Proof of Theorem 2. Based on the virtual utilities, define a
coloring A\, : V(Thair) — [k] for each a € N such that

Ao (x) € argmax{i,(x,j) | j € [k] such that A;(x) # 0}.

These colorings were shown to be proper by Igarashi (2023).
Lemma 2 then yields an elementary simplex S* =
(x7,%5,...,x5) of Thar and m : N — [k] that satisfy the
two conditions of the lemma. Let C; = 7 1(4) for each i €
[k]; the first condition of the lemma ensures that |C;| = n,.
Next, we construct the allocation A* = (Ajf, ..., A}) by in-
voking Lemma 1 on S*. We claim that (C, A*) is an EF1
outcome. To see this, consider any agent a € N (belong-
ing to Cr(q)) and any j € [k]. By the second condition of
Lemma 2, m(a) = A, (x},) for some h € [k]. We thus have

Ug ( :(a)) > Ug (x5, m(a)) (by Lemma 1)

> da(x},,j)  (since m(a) = Aa(x},))
> u, (A7) (by Lemma 1).
Hence, (C, A*) is an EF1 outcome, as desired. O

5 Envy-Freeness: Asymptotic Existence

In this section, we turn our attention to the asymptotic ex-
istence of envy-free outcomes. Specifically, we consider a
setting where the utilities are additive and, for each a € N
and g € M, the utility u,(g) is drawn independently from a
given distribution D. This distribution is assumed to be non-
atomic (i.e., does not put a positive probability on any single
point) and has a support contained in the interval’ [0, 1]. We
also assume throughout this section that all groups have the
same size, that is, ny = --+ = n; = n/k—in particular,
n is divisible by k. We fix k£ and investigate the asymptotic
(non-)existence of EF outcomes as n grows. We say that an
event occurs with high probability if the probability that it
occurs approaches 1 as n — oo.

5.1 Divisible Case

We first consider the case where the number of goods m
is divisible by k. Intuitively, this is an “easier” case, as it
is possible to give every group the same number of goods.
For this case, we show that the phase transition occurs at
m = O(logn), as stated in the following two theorems.

Theorem 3. For any fixed k > 2, if m < “‘T”, then with
high probability, no envy-free outcome exists.

"If the support is contained in [0,¢] for some ¢ > 1, we can
scale down all utilities by t.



Theorem 4. For any fixed k > 2, utility distribution D,
and B € (0, 1), there exists a constant Cy, g p such that, for
any sufficiently large n and any m > CY, g.p - Inn with the
property that m is divisible by k, there is a polynomial-time
algorithm that computes an envy-free outcome with proba-
bility at least 1 — 5.

To facilitate the proofs, we introduce some definitions.

¢ Let A denote the set of all allocations.

* An allocation A = (A1, ..., Ag) € Ais called balanced
if |[A1| = -+ = |Ag| = m/k. Let Ay, be the set of all
balanced allocations.

e For A€ Aanda € N, letiz(A) = argmax; ¢y ua(4i),
ties broken arbitrarily. For each i € [k], let p* =

Pr[if(A) = i], where the probability is taken over the
randomness of the utilities. Let p4 = (p7, ..., pi).

* Let CPF:4 be the partition of N where each agent a € N
is assigned to i* (A). Note that the outcome (CFF4, A)
is always envy-free.

* Let P(N) denote the set of all partitions (C1,...,Ck)
of N such that |Cy| = --- = |Ck| = n/k.

 For A € A, let £, denote the event that CPF:4 ¢ P(IV).

Since D is non-atomic, a tie in utilities (i.e., u,(B) =
uq (B') for some agent a and distinct bundles B, B”) occurs
with probability zero. We thus have the following.

Observation 1. The probability that an envy-free outcome
exists is equal to Pr[\/ , , Ea].

We continue with further preliminaries on probabilities.

* For a distribution P, we write supp(P) to denote its sup-
port. For A C supp(P), we write P(A) as a shorthand
for the measure (i.e., probability) of A under P. When
A = {)\} has size one, we simply write P(A).

s For ¥ € R%4, we write N'(0,%) to denote the cen-
tered (multivariate) Gaussian distribution supported on
R¢ with covariance ¥.

* Let AX~! denote the discrete (k—1)-simplex {x € Z%,, |
Dicpk T = k-

e Forn € Nand p € A*~1, the multinomial distribution
Mult (n, p) is a distribution supported on A¥~1 where
Mult (n, p) {x} = (1) [Ticpy pi* foreachx € AR=L

X

We do not include every proof here; all missing proofs can
be found in the appendix.

Non-Existence via First Moment Method. We begin by
proving the non-existence result (Theorem 3) via the first
moment method. Specifically, in light of Observation 1, we
compute Pr[€,4] for any allocation A and apply the union
bound. We start with a simple formula.

Observation 2. For any allocation A, we have Pr[€4] =
Mult (n,pA) {% . 1}.

Proof. Since the agents’ utilities are independent, the distri-
bution of the number of agents in C** is Mult (n, p*).
The formula follows from the definition of £ 4.

A standard bound on Mult (n,p®?) {# -1} then yields
the following lemma.

Lemma 4. For any A € A, we have Pr[€4] < kk/i,l )
(2mn) 2
2
Moreover, for any A € Ay, Pri€a] > ﬁ . L,H
€ (2mn) 2

We can now prove Theorem 3 by taking the union bound.

Proof of Theorem 3. Using Observation 1 and Lemma 4 and
taking the union bound over all A € A, we find that the
probability that an envy-free outcome exists is at most

k2 me  kF/2 Kk/2
k™ T SN T T mmEs
(2mn) "2 ne n- 4

where we use the assumption that m < an' The last quan-
tity is o(1) for any fixed k > 2. O

Existence via Second Moment Method. Next, we turn to
the existence result (Theorem 4). Recall that we have es-
timated the first moment Pr[€4] in Lemma 4. One might
expect that when the sum of Pr[€4] over all A € A far
exceeds 1, our desired event \/ AcA €4 occurs with high
probability. However, this is not necessarily true for depen-
dent events. To overcome this issue, we employ the second
moment method, which leverages the fact that if the events
are nearly independent, in the sense that Pr[€a A E4/] <
(1 + o(1)) Pr[€4] - Pr[€a/], then we can reach the desired
conclusion. Unfortunately, such an inequality need not hold
for all pairs of allocations A, A’. Indeed, when A and A’
are “close”, £4 and £ 4+ can be highly correlated. Therefore,
we will only apply the second-moment method on a set of
allocations that are “far away” from one another. The ex-
act definition of “far away” that we use is given below in
Definition 1. Observe that if A, A’ are drawn independently
at random from Ap,y, then E[|A; N A)|] = m/E? for any
i,j € [k]. Thus, the condition in Definition 1 requires that
|A; N A% is close to its expectation.

Definition 1. For 6 € [0,1], two balanced allocations
A= (A,...,Ap)and A" = (Al,...  A}) are said to be
J-intersection balanced (6-1B) if w < JA; N A;\ <

m(;jé) foralli,j € [k]. We say that balanced allocations

AWM AD) gre §-IB if every pair among them is 5-IB.

A standard concentration argument shows that if m >
Oy.s(logn), then n?* random balanced allocations satisfy
0-1B with high probability, as stated below.

Lemma 5. Forany ¢ € (0,1) and any m > %4 -Inn such

that m is divisible by k, let AV, . .. ,A(”Qk) be balanced
allocations drawn uniformly and independently at random.
Then, with high probability, these allocations are 6-IB.

The remainder of this section is largely devoted to bound-
ing the second moment as stated in the following lemma,
where 02 > 0 is the variance of D.

Lemma 6. For any fixed 8 € (0,1), if 6 < % and m >

48282’213, then for any pair of 0-IB balanced allocations A




and A’, we have

Pr{€ar | £4] < = B
Hear] A]_1—5/2_0(1).(27m)%.

Before we prove Lemma 6, let us first show how to use it
to establish Theorem 4.
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Proof of Theorem 4. Let Cj, g p = max {%, 1920000k }

256
where § = 12‘% The algorithm works as follows.
* Choose balanced allocations A™M), ... ,A("%) indepen-

dently and uniformly at random.®
s For w € [n?*], check whether CEFA™ ¢ P(N). If so,
output (CEF-A™ | 4(w)),

The algorithm runs in time n°*) . m. To bound its success

probability, note that by Lemma 5, A1) ... A®*") are 5-1B
with high probability. We condition on this event henceforth.

Our algorithm succeeds when the event \/we[n%] EAw)
occurs. Let Z = [{w € [n?*] | E40w) }| and ¢ = Pr[€ 4u];
note that ¢ does not depend on w due to symmetry. Using the
second moment method, the probability that the algorithm
succeeds can be bounded as follows:

Pr \/ Eaewy | =Pr[Z>0] >

weE [n?F]

1
= PrIE .o 1€ ]
A D] (5 + Xvema wy — g A )

Applying Lemmas 4 and 6, the denominator is at most

1 k-1 1
DY O("z)Jr 2. 1—8/2—o(1)
weE [n?F] ve[n2k]\{w}
1

T 1-8/2-0(1)

Thus, our algorithm succeeds with probability 1 — 3/2 —
o(1), which is at least 1 — 3 for any sufficiently large n. O

We now proceed to prove Lemma 6. Fix two balanced

allocations A, A’ that are §-IB. For i,i’ € [k], we let’
PG,y = Prliz(A) =i Nig(A') =4'].
Lemma 7. For each a € N, let X* be a random vari-
able on {ei,...,er} such that Pr[X* = ey] = k -
D([ka/n],i") Jor each i' € [k]. Then, Pr[€a | Ea] =
Pr(X'+.. . +X"=12.1].

Proof. By definition, Pr[€4: | £4] = Pr[CEFA" € P(N) |
CFF4 ¢ P(N)]. Due to the symmetry across agents and
since A is balanced, we may assume that C*F4 assigns
agent a € N to group [ka/n]. Conditioned on this, we can

8For example, we can take a random permutation of the goods,
and let each block of m /k goods form a bundle.

9p(i,7;:) is the same for every agent a, so we omit a from the
notation.

take X to be the random variable such that X = e;.(a).
Indeed, we have that
Pr[X* = ey] = Prli(A)) = i | i%(A) = [ka/n]]
P(Tka/n],i")
= =k ”
Prfi(4) = [ka/n]] ~ " P/
where we use Bayes’ law and the symmetry across groups,

respectively. Finally, observe that CEF-4" € P(N) is equiv-
alentto X' 4 ... 4 X" = 2.1, O

The rest of the proof of Lemma 6 can be divided into two
parts: (i) showing that the values p(; ;) are all close to 1/ k2,

and (ii) bounding Pr [X! + .-+ X" = 2 . 1].
Part (i): Bounding p(; ;1. We need the following multi-
variate generalization of the Berry—Esseen theorem, which

is stated as Theorem 1.1 in the work of Rai¢ (2019).'°

Lemma 8 (Rai¢ 2019). Ler W' ..., W7 be inde-
pendent random variables in R with mean zero,
H = W' + ... + WT and ¥ = CovlH] €
R4 pe the covariance matrix of H. For any convex
A C RY it holds that |Pr[H € A] — N(0,2){A}] <
60d"/* 3,y Bl 2 W3],

Let us now give the proof overview for this part. We let
d = k? and implicitly associate!! tuples (j,5") € [k]? with
elements in [k?] when writing the indices for readability.

Let p denote the mean of D. For each g € M, we define
the random variable W9 € R? such that

. _ {(ua(g)—u)-g% ifgeA;nAl,;

(:3") 0 otherwise
for all 4, j' € [k]; note that this distribution is the same re-
gardless of a. Then, let H = geM W9, Moreover, for all

i,i’ € [k], let A; » C RY be the set of all vectors v € R?
that satisfy the following constraints:

Do = Y G vj € [k
Le k] Le k]
Z V(e,i) > Z V(e,57) V]l S []42]
Le (k] Le k]

One can check that when there are no ties in utilities,
i*(A) =iand i} (A’) = ¢ ifand only if H € A, ;. In other
words, Pr[H € A; ;] is exactly p(; ;). Since A is con-
vex, Lemma 8 implies that p; ;1) is close to N'(0, X){A; i+ }
for ¥ = Cov[H]. Using the fact that A, A are 6-IB and bal-
anced, we can show that X is also close to the identity matrix
1. By applying a standard total variation distance bound be-
tween Gaussians, this also implies that A'(0, X){A; ;- } and
N(0,14){A; '} are close. Due to symmetry, the latter is
simply 1%2 Thus, we can conclude that p(; ;) itself is close

to k.%, as stated more formally below.

The version stated here 1follc')ws from Theorem 1.1 of Raic
(2019) by letting X; = S~ 2W?, so that 3., Var(X;) = I,.
Also, we use the term 60d'/*, which is weaker than the one used
by Raic (2019).

"For example, (4, j') can be associated with k(j — 1) + 5.



Lemma 9. Let v € (0,1). Suppose that 6 < 3= and m >
30000k7
~200

Part (ii): Bounding Pr X'+ ...+ X" =72.1]. We
reinterpret X? so that it is a mixture distribution between the
uniform distribution on {eq, ..., e} and a “leftover” distri-
bution. In other words, for each X?, we can toss a (biased)
coin and, based on the outcome, sample X * either from the
uniform distribution or from the leftover distribution. By a
concentration bound, we show that X? is drawn from the
uniform distribution for most indices 4. For these X, their
sum exactly follows the multinomial distribution, which we
have a very good estimate on. From this, we can derive the
following bound.

Lemma 10. Let ¢ € (0,0.5) and X',..., X" be any
independent random variables on {ei,..., ey} such that

|Pr[X® = ;] — il < %foralla € Nandi € [k]. If
n> -k thenPr{f(l—&—---—l—)N("—ﬂ-l is at most

. Then, for all i,i' € [k], we have |p; iy — 75| < 7.

1-2¢7 Tk
kk/Q
(2m(1—20)n) T

Finally, combining Lemmas 7, 9, and 10 yields Lemma 6.

exp (72(271) +

5.2 Non-Divisible Case

Next, we consider the case where m is not divisible by k.
For this case, we prove that an envy-free outcome cannot
exist with high probability unless m = (y/n). This dif-
fers markedly from the divisible case, where m = w(logn)
suffices for existence.

Theorem 5. For any fixed k > 2, if m = o(/n) and m is
not divisible by k, then with high probability, no envy-free
outcome exists.

The proof of this non-existence result, like the divisible
case (Theorem 3), uses the first moment method. The key
distinguishing property between the two cases is encapsu-
lated in the lemma below, which states that for any alloca-
tion A, there exists i € [k] such that p#* is noticeably smaller
than %; in particular, we may take an index ¢ corresponding
to a bundle with the smallest size. This is in contrast to the
divisible case, for which a balanced allocation gives p* = %

for all ¢ € [k].
Lemma 11. If m is not divisible by k, then for any A € A,
there exists i € [k] such that p* < ¢ — wEom Where a >0
is a constant depending only on D.

Lemma 11 implies the following upper bound on Pr[€ 4].
Lemma 12. If m is not divisible by k, then for any A € A,
we have Pr[€a] < Vk - exp (‘%i : ﬁ)

-, where « is the
constant from Lemma 11.

We now finish the proof in a similar manner as Theorem 3.

Proof of Theorem 5. Using Observation 1 and Lemma 12
and taking the union bound over all A € A, the probabil-
ity that an envy-free outcome exists is at most & - vk -

exp (f%i . ﬂ), which is o(1) because m = o(n/m). O

m

When m = Q(nlogn), an envy-free outcome exists with
high probability due to the result in the fixed-group setting
by Manurangsi and Suksompong (2017). Tightening the gap
between o(y/n) and Q(nlogn) is an interesting question.

6 Conclusion

In this paper, we have studied fairness in the allocation of in-
divisible goods with variable groups, where a partition of the
agents into groups can be chosen along with an allocation
of the goods. We demonstrated that the flexibility afforded
by this model allows strong envy-freeness guarantees to be
made in both worst-case and average-case scenarios.
Besides closing the asymptotic gap in the non-divisible
case (Section 5.2) and extending the asymptotic analysis in
Section 5 to the case where groups may have differing sizes,
an intriguing direction for future work is to make connec-
tions between the variable-group model and the setting of
hedonic games (Aziz and Savani 2016). Specifically, in he-
donic games, agents derive utilities from other agents as-
signed to the same group, and the objective is to find a de-
sirable partition of the agents into groups; variants where
the group sizes are fixed have also been considered (Bilo,
Monaco, and Moscardelli 2022; Li et al. 2023). A general-
ization of both models would therefore be to permit pref-
erences both over agents as well as over goods—this can
reflect, e.g., group projects where resources are assigned to
each group.'? It would be interesting to investigate fairness
guarantees that can be made in this general setting.
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A Surjectivity of f in the proof of Lemma 2

We now show the surjectivity of f as defined in the proof
of Lemma 2. To this end, we will use the following lemma,
which is stated as Lemma 2.8 in the work of Meunier and
Su (2019).

Lemma 13 (Meunier and Su 2019). Any continuous map q
Sfrom a polytope to itself, which satisfies q(F') C F for every
face F' of the polytope, is surjective.

Lemma 14. Let f be as defined in the proof of Lemma 2.
Then, f is surjective.

Proof. Let) : AF~1 — S, denote the canonical mapping
from AF~1t0 S,,, ie.,

Y=g tme Yy vielk-1]
j=1

Thgs, to show that ? is surjective, it suffices to show that
q := fotissurjective. By Lemma 13, we only need to show
that ¢ satisfies the condition of the lemma. For eacha € N,
define ¢(®) := f(a) o). Since ¢ = L3 o q(@, itisin
turn sufficient to show that each ¢(%) satisfies the condition
of Lemma 13.

Let us now fix a € N, a face F of A*~1 and y € F.

Consider x = 1 (y). By definition of ?(a), there exist!3

x', ... x¥ € V(Tha) and o, ..., a* > 0 such that
helk’]

alxh = X;
> at @) =7 x),

helk’]

Thus, to show that ¢(%) (y) = f(a) (x) belongs to F, it suf-
fices to argue that f(*)(x") belongs to F for all h € [K'].
Since F is a face of AF~1, there exists S C [k] such
that F' is the span of {€/ | j € S}. From the definition
of 1), this implies that x; = x;_; for all i ¢ S. Since x

is a strictly positive convex combination of x', ..., x", we

also have that 2" = 2 | forall h € [k'] and i ¢ S. This
means that x” belongs to the span of {¢)(e’) | j € S}; note
also that each v (e’) is a vertex of V(Tha). Since A, is
proper, we have that \,(x") € S. It follows that f(*)(x") =

ehe(x") belongs to F', as desired. O

B Deferred Proofs from Section 5
B.1 Additional Preliminaries
We introduce some additional notation.
BNote that k' can be strictly less than & if x belong to a face

of an elementary simplex (since we only consider those x" with
coefficient strictly greater than zero).



e Forp € [0,1] and r € N, let Ber (p) and Bin (r, p) de-
note the Bernoulli and binomial distributions with suc-
cess probability p, respectively.

* We use Dxkr, and Dyy to denote the KL divergence and
the total variation (TV) distance of two distributions, re-
spectively. Recall that the TV distance of two distribu-
tions Py, P is defined by

Drv (P1,P2) = sup [P1(A) — P2(A)].

ACsupp(P1)Usupp(P2)

Since we will only use the KL divergence on discrete
distributions, we only state the definition for such distri-
butions:

_ - 11N ,Pl(A)
D (P[Ps) = Aesgmmm 1 ( - A)) .

We will also use Pinsker’s inequality, which relates the
TV distance and the KL divergence.

Lemma 15 (Pinsker’s inequality). For any distributions Py
and Py, it holds that Dry (P1,P2) < 1/ 5 - Dk (P1]|P2).

B.2 Multinomial Probability Mass Estimate

The following estimate of the probability mass of the multi-
nomial distribution follows from Stirling’s approximation of
factorials. It will be useful in the proof of both the existential
and non-existential results.

Lemma 16. For any n,k € N such that n zs divisible by k
and any p € A*~L, there exists 7, ), € [0, % ] such that

1 kk/2 1
Mult(n,p){ﬁl}: — - P )
k ek (2rn) e enPru(ilp)

To prove Lemma 16, we will need the following precise
version of Stirling’s approximation.

Lemma 17 (Robbins 1955). For each positive integer n, it

holds that
n! = V2mn <E> e,
e

1
where 12n+1 <rp < 1on-

Lemma 17 yields a relatively simple formula for the prob-
ability mass function of the multinomial distribution.

Lemma 18. Foranyn € N, p € AFL andx € Afjl such
that x; > 0 for all i € [k], the probability Mult (n, p) {x}
is equal to

1 vn 1

er (27r)% [Licp @ enDru(x([p)’

where

k
O0<rx<———.
MmN e (k] T4

Proof. Letting r,, be as in Lemma 17, we have

Mult (n, p {x}—( > II 2

1€ (k]

11

Tx k=1 .
e (2m) 2 Hie[k] Ti ielk] Ti/n
L. vn e—nDi(%p)
Tx k-1 ’
e @2m)7 \ILiew =
where ry = Zie[k] Ty, — Tn. From the bounds of 7, in
Lemma 17, it follows easily that 0 < ry < m ]

Lemma 16 is then an immediate corollary of Lemma 18
(with x = % -land 7, ) = r%.l).

B.3 Proof of Lemma 4

The upper bound follows directly from Observation 2,
Lemma 16, and non-negativity of the KL-divergence.

For the lower bound, observe that due to the symme-
try over bundles when A € Ay, we have pf = - =
pit = %+, and so Dk, (£||p) = 0. Again, Observation 2 and
Lemma 16 then imply the bound.

B.4 Proof of Lemma 5

To prove Lemma 5, we will use the standard Hoeffding
bound for sampling without replacement. The following
lemma is stated as Corollary 1.1 in the work of Serfling
(1974).14

Lemma 19 (Serfling 1974). Let Xi,...,X; be random
variables drawn from some list x1, ...,z € {0,1} with-
out replacement. Let S = X1 + - - - + X; and p = E[S]. For
any 0 > 0, we have
Pr[S—p>0]< exp( 202/t) ;
Pr[S — pu < —6] < exp (—26%/t).
Proof of Lemma 5. To compute the probability that

AW A are 5B, let us fix A® for some
v € [n?*]. Then, consider A for w € [n?*]\ {v} that is

picked at random, and any 4,5 € [k]. Once Agv) is fixed,
weletz, = 1[g € AEU)] for each g € M, and view these

values as in Lemma 19. Then, A;w) = {91, Gmy} is
chosen uniformly at random among all subsets of M of
size m/k; let X1 = xg,..., Xy = zg,, - Observe

that S := X3 + - + X,y is equal to PARES A;w)| and
E[S] = m/k?. As such, we may apply Lemma 19 with
0= ‘5"' to conclude that

v w m(l—20 m1+5
Pr[AE)ﬂAE« ’|¢[ S . )H

< 2exp (—252m/k3)
2
S W7

“In fact, Serfling’s version is slightly stronger because it con-
tains the term 1 — f;;.



. . . 4
where the last inequality is due to m > 45% -Inn.

Taking the union bound over all distinct v, w € [n?*] and

all i, j € [k], we have Pr[AM . A™) are 6-IB] > 1 —
Qkigfk =1—o0(1) as desired. O

B.5 Proof of Lemma 6
Let ¢ = 47 and v = k% = %. Applying Lemma 7
yields Pr[EA/ | Ea] <Pr[X' 4+ X" =2.1], where
X', ..., X" are as defined there. By Lemma 9, X!, ..., X"
satisfy the condition of Lemma 10; in particular, since we as-
sume that k is fixed and n grows, the condition n > =5 is

2(
met. Hence,
Pr[€a | £4] < Pr {Xl +
kk:/Q
(2m(1—20)n) =

_ 1 N 1 kk/2
=0\ ) T a—e0r

. (2mn) "z
1 1 kk/2
< .
_0<nk21> * 1-3/2
1 k.k/Q

(27n) "=
ST=82-0) 2em)s

(2mn) 2z
where we use Bernoulli’s inequality for the penultimate in-
equality.

< exp (72C2n) +

B.6 Proof of Lemma 9

To prove Lemma 9, we need the following bound on the total
variation distance between two centered Gaussians, stated as
Theorem 1.1 in the work of Devroye, Mehrabian, and Red-
dad (2023).

Lemma 20 (Devroye, Mehrabian, and Reddad 2023). For

positive definite matrices 3, Y € R et Ay,...,\g be
the eigenvalues of ¥~ — I,. Then,

3

Doy (J\/(O,E),/\/(O 2)) -

We are now ready to show that the probabilities p(; ;) are
all close to 1/k2.

Proof of Lemma 9. Let y and o2 denote the mean and vari-

ance of D, respectively. For each g € M, let W9 € R** be
a random variable such that

— {wa(g) —p)-

_ oo ifg e AN AY;
(3.3 0 otherwise

for all 4,5’ € [k]; note that this definition is the same re-
gardless of a. Observe also that the random variables W9
are independent for different g (since the utilities are inde-
pendent) and have mean zero. Next, let H = gem WO It

12

can be seen that'> Cov[H] = diag((07; ;/)); j7e[])> Where
oG = ,/%2 -[Aj M A% |5 we write ¥ as a shorthand for
diag((0; ;))j,j7eix))- Finally, let A; ;s denote all vectors
v € R¥’ that satisfy

dovin = Y v and D vy = D V)

Le (k] Le k] Le (k] Le k]

for all j,j° € [k]. Since A;, is convex, we can apply
Lemma 8 to get

|PI‘[H S Ai,i’] —N(O, 2){1\1,,/”

< 60K'2 Y E[[STAW 3]
geEM

Now, notice that for any j, j* € [k],

(S7V2W) 5 0

) —1 ) ’.
_ (ua(g) — 1) U\/m ifge A; N A]M
0 otherwise.

Thus, since u,(g) € [0,1], we have ||X~1/2W9|,
\/ﬁ for g € A; N A,. Plugging this into the in-

equality above yields
| Pr[H € A ] — N(0,2){As1r }|

1
1/2
< 60K/ Z Z o3|A; N AL, |15

j.d'Elk] g€ A;NAY,

1
ook Y L
j,j’e[k] 0'3 |A] ﬂA3,|
<60k > !

jireln] o34/ U0

 [3600k7 1
B o6 m(1l—§)

< 0.5y,

6]

where the second inequality is due to our assumption that
A, A" are §-IB and the last inequality follows from our as-
sumption on m and k.

Next, we bound the TV distance between N (0,Y) and
N(0, I2) via Lemma 20. To this end, observe that ¥ —I.2 =

diag ((’fz A AL - 1) > Thus, the eigenval-
3,3’ €[]

ueson—IdareE |A; N A% — 1 forall j,j" € [k].
Since A, A’ are 5-1B, we have

k2

< m

SRecall that, foru € RY, diag(u) € R¥*? denotes the diagonal
matrix whose diagonal entries are u and remaining entries are zero.

2
AN AL - 1) < 52



Plugging this into Lemma 20, we conclude that

Dryv (N(0,%),N(0,1;2)) < 5 - k6 < 0.5y (2)
Therefore, by the triangle inequality, we have
[Pr[H € Ajir] = N(0, Ig2){Ai i }|
S |PI‘[H € Ai,i’] — ./\/’(07 Z){Al,z’}l
1,2
+ ‘N(O,Z){Al)l/} _N(07Ik2){Ai,i’}| S Y-

Observe that by definition of A; ;; and non-atomicity of D,
it holds that p(; ;) = Pr[H € A;;/]. Moreover, due to sym-
metry, we have

N0, Iz ){Aiir } = N(0, I2){A jr }

for all j,j' € [k]. Note that UJ; ;e Ajyr = R and
the intersection of any two distinct sets A; ;; has measure
zero (with respect to N'(0, I;2)). As such, we have that
N(0,I2){A;#} = 7. Combining this with the inequal-
ity above concludes our proof. O

B.7 Proof of Lemma 10

We introduce an additional notation. For any random vari-
able X, let 9(X) = max,eceupp(x) Pr[X = z]. Sometimes
we also write the distribution of X instead of X itself. We
use the following properties of 9, whose proofs we defer to
Appendix B.8.

Lemma 21. For independent X,Y € 72 it holds that
(X +Y) <o(X).

Lemma 22. For any positive integer v > k, the following

inequality holds: (Mult (r, % . 1)) < Lf,l

(2mr) 2z
We also need Hoeffding’s inequality, which is stated in
terms of the binomial distribution for convenience.
Lemma 23 (Hoeffding’s inequality). For i € (0,1), ¢ > 0,
andn € N, Prg gin(n,y)[S < ny —t] < exp (—2t2/n).

We wish to upper bound Pr [Xl fo kX =1 1]
By definition, this is at most 0 (f(l +--F X") To bound

this quantity, we reinterpret X ® so that it is a mixture distri-
bution between the uniform distribution on {e1, . . ., e} and
a “leftover” distribution. In other words, for each X, we can
toss a (biased) coin and, based on the outcome, sample X*“
either from the uniform distribution or from the leftover dis-
tribution. Using Lemma 23, we show that X ¢ is drawn from
the uniform distribution for most a. For these X ¢, their sum
exactly follows the multinomial distribution, so we can ap-
ply Lemma 22. Finally, Lemma 21 allows us to handle the
leftover.

Proof of Lemma 10. Tt suffices to bound 9(X ' +- - - 4+ X™).

Instead of sampling each Xa directly, we can alternatively
sample X as follows.

* Sample Z® ~ Ber (1 — ().

* Sample U® uniformly at random from {e1, ..., e}.
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 Sample V* from {ey,...,e;} where Pr[V® =
1 (Pr[X“ =il - (1 g)%). ~
e If Z¢=1,let X =U%if Z% =0,let X* = V.

Observe that V¢ is a valid probability distribution. Also, one
can check that the process defined above results in the cor-

rect probability distribution for Xe,
Therefore, 9(X* + - - - + X™) can be written as

max Pr[X!'+...+ X" =x]

xeAk-1

= max Pr ZU“—&—ZV‘I— ]
€An"" 5CN aes a'gs

Pr[S={aeN|Z°=1}]

< Za(ZU“JrZV“')

SCN \a€S a’'¢s
PriS={aeN|2°=1}]

o (xe)
SCN a€esS
-Pr[S

(Lemma 21)

={aeN|Z"=1}].

Observe that Y., o U is distributed as Mult (|S|, + - 1)
and that |S| = |[{a € N | Z* = 1}| is distributed as
Bin (n7 1 — ¢). Thus, we can write the above inequality as

(X S+ X"
< IE'r‘~B1n(n 1-¢) |:D <Muh] ( 1>>:|
[r<(1-2
r~Bin(n,1—¢) C) ]
1
+ ETNBin(ml,C) [0 (Mult (T, E . 1)) r >
where the last inequality follows from the law of total expec-

tation. Applying Lemmas 23 and 22 respectively to bound
the two remaining terms completes the proof. O

< Pr

(1- 2c>n] ,

B.8 Properties of 0: Proofs of Lemmas 21 and 22
Proof of Lemma 21. For any z € supp(X + Y'), we have

PrX +Y =z= > PrX=z—y/Pr[y =y
y€Esupp(Y)
< ) AX)PrlY =y] =0(X).
y€supp(Y)
This implies that (X +Y") < d(X). O

For Lemma 22, we will use the following properties of the
gamma function. These properties are well-known and their
proofs can be found in standard textbooks on the topic (e.g.,
Artin 1964). Recall that a function is said to be logarithmi-
cally convex if its logarithm is convex.

Lemma 24. T" : R — R is a function that satisfies



(i) T(1 +7) =rl forallr € Z>o;
(ii) T is logarithmically convex on (0, 00);
(iii) For x > 1, T(1 4+ x) = V2rx(x/e)*e*®), where i :
[1,00) = Rxq is decreasing.

Proof of Lemma 22. Consider any x € A*~1, we have

1 7! 1
Mult(r,k-1> {x}:mﬁ

B I'(r+1)

 ILiep Dl +

L(r+1)
S D(r/k+ 1)k
V2rr(r/e
(Vamek (z)"™)" M
kk/2

k—1

2mr) =z

€
k'r

1

1)
1
kr
)"

where we use the properties of the gamma function from
Lemma 24 in the respective order. O

We remark that bounds in the same vein as Lemma 10
have been shown, e.g., by Ushakov (1986) and Postnikov
and Yudin (1988). However, these are not sufficient for our
purposes, since either they require the distributions to be
identical or the provided probability bound is not tight for
k > 2 (up to a constant factor).

B.9 Proof of Lemma 11

The proof of Lemma 11 requires a few intermediate lem-
mas. To state these lemmas, we need an additional nota-
tion. For any non-atomic real-valued distribution P and any
p € (0,1), let Qp(p) denote its p-th quantile, i.e., the
(unique) point x such that Prx..p[X < z] = p.

We start with the following inequality, which is an imme-
diate consequence of Chebyshev’s inequality.

Lemma 25. For any non-atomic real-valued distribution P
with mean p and standard deviation op and any p € (0, 1),

ap ap
p——<Qp(p) < pu+ :
N/ V1i=p
Next is a bound on the variance of a distribution after con-
ditioning it to be larger than a certain value.

Lemma 26. For any non-atomic real-valued distribution P
with standard deviation op and any p € (0,1), let P>, de-
note the conditional distribution of P on [x,00). Then, we
have Var(P>q, ) < 0% /(1 — p).

Proof. For any distribution ) with mean py and any real
number ¢, one can check that Ey .y [(Y — ¢)?] = Var(Y) +
(c = py)? = Var(Y).
Let pp denote the mean of P. We have
Var(P>qp ;)

< EXN'PEQP(;,) [(X - ,LL'P)2]

14

_ Exp[(X —pp)? - 1[X > Qp(p)]]
1-p
Exp[(X — pp)?]
1-p

2
op
1-p
as desired. O

)

We next bound the probability that two independent and
identically distributed (i.i.d.) random variables differ by at
most a certain amount.

Lemma 27. For any non-atomic real-valued distribution P’
with standard deviation o' and any £ > 0, we have

Pr
i.i.d.

¢
Y1 - Yo <] >minq -, —— ».
Y]Y2N77/[| ' 2| 6]_mln{8,320’/}

Proof. We may assume that £ < 407, as the right-hand side
does not increase further if £ > 40”’. Lemma 25 implies that
|Qp(0.25) — Qp/(0.75)| < 4o’.LetT = [40’/¢] > 1 and

I, ..., I be any partition of [Q7/(0.25), Qp/(0.75)] into
disjoint intervals of length at most & each. We have
Pr V1 —Y3| < ¢
Yl)yzl.:..vd.,Pl

>> P
e[ Y Ye K

=Y Pryel)
Y ~P!
te[T)

[Y1,Y; € I}]

2

1
=T Vb
1
4T
£
~ 320"’
where (*) follows from the Cauchy—Schwarz inequality and
the last inequality from our choice of T'. O

[Y € [@p(0.25), Qp:(0.75)])

Using the two bounds above, we now derive an inequality
concerning the difference between the maximum and a non-
maximum among k i.i.d. random variables.

Lemma 28. Let P be any non-atomic real-valued distribu-

i.i.d.

tion with standard deviation op. Let Z1, Zo, ..., Z;, "~ P.

Then, for any £ > 0,
PI'[Zl > Zo, ..

min{ -, ———= ,.
8 640’7:\/%
Proof. By symmetry, we have

Pr[Z1>Z2,...,Zkanle—Zk§§]

.7ZkandZ1—Zk§§]

> .
~ 16k2



1
= §(PI'[Zl > o, Zyand Zy — Zy, §§]
—|'PI‘[Z1C >Z1,...,0k—1 and 2y, — 7 Sf])

> 'PI‘[Zl,Zk>ZQ,...,Zk_1 and|Zl—Zk|§§]

N | =

To bound this term further, let p = 1 — 57 and ¢ = Q»(p).
We have

Pr(Z1, Z > Zoy. .., Znor and | Z1 — Zi| < €]

> Pr[Zth >q>Zy,...,72_1and |Z1 — Zk| < f]
= (1—p)?p" 2 Pr|Z1 — Zy| < &| 21, Zy > q
=1-p*"? P (712 <

,iid

21,2, P2

_ .1 &/1—p
Z(l_p)zpk Q-mln{873207)},

where the last inequality follows from Lemmas 26 and 27.
Finally, combining the two inequalities above and using
the definition of p, we have

Pr[Z1 > Zoy..., L and 27 — Zy, Sﬂ

11 I\ (1 ¢
> — 1= = -ming =, ————
— 2 4k2 2k 8" 640pVk

> 55 {5 G |
‘ming —, —————= ¢,
— 16k2 8 64opVk

where the last inequality is due to Bernoulli’s inequality. [J

We are now ready to prove Lemma 11. At a high level,
we first recall that in the case where A is balanced, each pf‘
is equal to 1/k. We then analyze the “probability deficit”
that p7* incurs when a good is added to some other bundle
A;. Lemma 28 ensures that, before the addition, the differ-
ence between u, (A;) and u, (A;) is small. This allows us to
lower-bound the probability deficit, which is incurred when
the additional value exceeds the difference.

Proof of Lemma 11. Assume without loss of generality that
|A1] < |Ag| < -+ < |Ag|. We will show that the desired
inequality holds for ¢ = 1. The case |A;| = 0 is trivial, so
we henceforth assume |A;| > 1. Let A5, ..., A} be arbi-
trary subsets of A, ..., Ay of size |A;], respectively, and
let Z1 = uq(A1), Zo = ua(Ab), ..., Zr = uq(AL). Since

Z1,..., 2y are ii.d. and non-atomic, we have
1
Pr[21 2 227...,Zk] = E

Thus, we can bound the desired probability as
Pr{ug (A1) > ua(Az), ..., uq(Ar)]
< Prlua(Ar) > ua(AS), ..o uq (A1), ua(Ag)]
=Pr[Zy > Zs,...,Z and u,(Ag) < Z1]
=Pr[Z1 > Za, ..., Z]
—Pr[Zy > Zs,..., 7 and ua(Ag) > Z1]

1
= E — PI'[Zl > Zo, ..., 2 and ’U,a(Ak) > Zl]

Now, observe that uq(Ar) = Z + uq(Ar \ Aj,). Since
m is not divisible by k, we have Ay, \ A}, # (. By definition
of quantiles, it holds that Pr{u,(Ax \ 4%) > Qp(1/2)] >
1/2. Moreover, uq(Ay \ A},) is independent of 71, . .., Zj.
Hence, we have

PI‘[Zl > Zs,..., 72 and ua(Ak) > Zl]

= Pr[Zl >Zo,....Zyand Z1 — 7, < ua(Ak \ A;C)}

> PI‘[Zl > ZQ, ey Zk and

Z1 — Z < Qp(1/2) < ua(Ar \ Ap)]

> -Pr[leZg,...,Zk anle—Zk<QD(1/2)].

1
2

For any random variable Y supported on [0, 1], it holds
that

Var(Y) = E[Y?] - E[Y]? <E[Y] -E[Y]* < 1/4.

Since each of Z, ..., Zj is a sum of |A;]| independent ran-
dom variables supported on [0, 1], we have
|A1| m
Z1)y .- i) < — < —.
Var(Zy), ..., Var(Zg) < 1 STk

Moreover, Qp(1/2) > 0 since D is non-atomic and sup-
ported on [0, 1]. Thus, we may apply Lemma 28 to get

PI‘[Zl > ZQ, .. .,Zk and 7, — Z), < QD(I/Q)]

. Qn(1/2)
= 512k2/m’
Finally, putting everything together yields the desired bound
for o = 921/2) O
1024 *

B.10 Proof of Lemma 12
From Observation 2, Lemma 16, and the fact that n > &,
we have Pr[€4] < vk . Also, Lemmas 15 and 11

en'DKL(% HPA)

respectively imply that Dk, (%HpA) > 2-Drv (%713’4)2 >

o2
k*m

. Combining these yields the claimed bound.



