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Abstract

Equalized odds is a statistical notion of fairness in machine learning that ensures
that classification algorithms do not discriminate against protected groups. We
extend equalized odds to the setting of cardinality-constrained fair classification,
where we have a bounded amount of a resource to distribute. This setting coincides
with classic fair division problems, which allows us to apply concepts from that
literature in parallel to equalized odds. In particular, we consider the axioms
of resource monotonicity, consistency, and population monotonicity, all three of
which relate different allocation instances to prevent paradoxes. Using a geometric
characterization of equalized odds, we examine the compatibility of equalized odds
with these axioms. We empirically evaluate the cost of allocation rules that satisfy
both equalized odds and axioms of fair division on a dataset of FICO credit scores.

1 Introduction

Throughout most of human history, the question “who deserves what?” could only be answered by
people. As such, questions of fairly allocating resources among groups of people were historically
dictated by common sense, enforced by law, or suggested by social conventions. In the age of big data,
however, machine learning algorithms increasingly dictate decisions about distributing resources in a
wide range of domains [15, 19]. Machine learning classifiers have been trained to determine which
applicants deserve bank loans [19], which students merit acceptance from a particular school [23], or
which prisoners should receive parole [15]. The prevalence of algorithmic intervention has led to
a widespread call for accountability in machine learning: in order to ensure that algorithms do not
disproportionately affect different constituent subpopulations, researchers must be able to provide
fairness guarantees of the resulting classification algorithms. This call, in turn, has led to much
prior work on measuring and ensuring statistical notions of fairness, notably through metrics like
demographic parity and equalized odds [8, 10, 11, 13, 16, 18, 24–26].

The statistical notion of fairness that we will consider throughout this paper is that of equalized
odds, which states that a classifier must have equal true positive and false positive rates for all
groups. While equalized odds has been extensively studied as a metric of fairness in machine
learning [10, 11, 13, 16, 18, 24], it has not been considered in settings where a desired number of
positive labels is given. This constraint is natural and ubiquitous whenever agents labeled as positive
obtain a limited resource. For instance, a school can only offer admission to a fixed number of
students, a police department’s staff dictates the number of suspects they can stop and frisk, and a
bank has a finite amount of available loans. In the unconstrained setting, the quality of a classifier is
computed by adding a given utility per true positive and subtracting a given cost per false positive. In
the cardinality-constrained setting, the efficiency that we seek to maximize is simply the number of
true positives (e.g., people who repay loans or students who will graduate from school). Since we
fix the number of overall positives, optimizing for any choice of (positive) utility and (positive) cost
coincides with maximizing our notion of efficiency.

While fair classification has not previously been studied from this perspective, the task of fairly
allocating a finite resource is central to the field of fair division [6, 17]. Indeed, it is natural to directly



formulate the problem of fairly classifying agents, where exactly k must be labeled as positive, as
the fair division problem of awarding k identical items to k applicants in a way that satisfies certain
fairness constraints.

That being said, the notions of fairness differ between the fairness in machine learning and fair
division communities. On one side, the machine learning literature studies statistical notions of
fairness that hold over groups, which are usually mutually exclusive. In contrast, the fair division
literature includes a whole toolbox of fairness axioms, most of which can be understood as precluding
a paradox that, if present, would clearly violate intuitive notions of fairness. Combinations of these
axioms then induce families of allocation rules that are immune to these types of paradoxes. To the
best of our knowledge, there has been no prior work that relates statistical measures of fairness to
classical axioms of fairness. This is unfortunate, since it would certainly be desirable to prevent the
corresponding types of paradoxes when applying fair machine learning. This motivates our main
research question: To what extent is equalized odds compatible with axioms of fairness prevalent in
fair division?

Our contributions are twofold: First, we introduce the setting of cardinality constraints and study
optimal classification algorithms that satisfy equalized odds in this setting. In particular, we present a
geometric characterization of the optimal allocation rule that satisfies equalized odds given cardinality
constraints.

Second, in the cardinality-constrained model, we examine the relationship between equalized odds
and the following three standard fair-division axioms. Resource monotonicity captures the intuition
that, given more of a resource to distribute among a population, no agent should be worse off than
before. Consistency says that, if an agent leaves with her allocation, then running the same allocation
rule on the remaining agents and resources should result in the remaining agents receiving the same
allocations as before. Population monotonicity states that, if an agent joins the division process, then
all previous agents should receive at most what they previously received.

For resource monotonicity, we achieve a positive result: resource monotonicity can be implemented
alongside equalized odds without cost to efficiency, which requires careful consideration of how
goods are allocated inside of each group. For consistency, we prove a strikingly negative result — the
only allocation rule that satisfies equalized odds and consistency is uniform allocation. In the case of
population monotonicity, compatibility with equalized odds is also severely limited. More precisely,
no allocation rule that achieves a constant approximation of the optimal equalized-odds efficiency
can satisfy population monotonicity. To complement these theoretical results, we use a dataset of
FICO credit scores to study the efficiency of allocation rules that satisfy equalized odds and each of
the three axioms.

Our results are related to, but conceptually and technically distinct from, previous work showing
that equalized odds is incompatible with other statistical notions of fairness, notably the property of
calibration. Intuitively, calibration states that if a classifier assigns a probability label of p to a set of
n people, then p n of them should actually be positive [10, 16, 18]. It has been shown [16, 18] that
when groups have different base rates, i.e., probabilities that they belong to the positive class, the only
classifier that satisfies equalized odds and calibration is the perfect classifier. Note that our approach
is not in conflict with these results; we assume a calibrated, unfair classifier and produce a fair, but
uncalibrated classifier. Indeed, our final classifier should not be expected to be calibrated since the
sum of allocations is determined by the cardinality constraint, not by the fraction of positive agents
in the population. Additionally, work by Corbett-Davies et al. [11] establishes a trade-off between
achieving equalized odds and the natural fairness notion of holding all agents in all groups to the
same standard.

2 Our Model

We consider settings with at least two groups, and let g range over these groups by default. Each
group is composed of positive and negative agents; allocating a good to a positive agent is preferable
to allocating it to a negative agent. For example, if we distribute loans, positive agents might be those
who will not default if they are given the loan, or, if we distribute financial aid, positive individuals
might be students who would struggle with financing their studies otherwise. To exclude trivial cases,
we assume that both positive and negative agents exist, possibly in different groups.
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We assume the existence of a calibrated classifier on each group. Thus, for every group g, there is a
finite set Pg of probabilities. When simultaneously ranging over g and p, we implicitly only refer
to p ∈ Pg. For each p ∈ Pg, dpg > 0 gives the number of agents to whom the classifier assigns
probability p of being positive. We refer to the set of agents in the same group classified as the
same probability as being in one bucket. By the calibration assumption, p dpg agents in a bucket
(g, p) are positive and (1 − p) dpg are negative. Denote the total number of positive agents in g by
D+

g :=
∑

p∈Pg
p dpg , and the total number of negative agents by D−g :=

∑
p∈Pg

(1− p) dpg . The total
cardinality of a group is Dg :=

∑
p∈Pg

dpg , and the total cardinality over all groups is D :=
∑

gDg .

2.1 From Classification with Cardinality Constraints to Allocation of Divisible Goods

An allocation algorithm is given the output of the classifier and a real number k ∈ [0, D]. The
algorithm must allocate k units of a divisible good to the agents, where each agent can receive at
most one unit of the good. The objective in this allocation is to maximize efficiency, i.e., the amount
of goods allocated to positive agents.

Note that this setting, where we allocate a divisible good, generalizes binary classification with
cardinality constraints. Indeed, the latter problem is equivalent to distributing k discrete indivisible
items. If we choose our good as the probability of receiving an item, we can immediately apply our
framework to this setting. Using the Birkhoff-von Neumann theorem [5, 22], the individual allocation
probabilities can be translated into a lottery of the items that guarantees that exactly k many items are
distributed at any time.

That said, the increased expressive power does allow us to capture additional settings of interest. For
example, in the context of the fair allocation of financial aid, colleges typically provide different
amounts of aid to different students, rather than making binary decisions.

Returning to our model, for each bucket (g, p), let `pg ∈ [0, dpg] denote the amount of goods allocated
to the agents in the bucket. Since the algorithm does not possess more detailed information than
the classifier output, we may without loss of generality assume that the allocation equally spreads a
bucket’s allocation between its members. Indeed, if 0 < p < 1, any unbalanced allocation inside the
bucket would make mean allocations in the definition of equalized odds depend on which agents will
be positive, which means that equalized odds cannot be guaranteed. For the probabilities 0 and 1, all
agents in the bucket have the same type, and the algorithm can, in principle, arbitrarily discriminate
between them. However, since the agents in the bucket are indistinguishable, assuming a balanced
allocation does not change our analyses.

With these observations, we know that the total allocation to positive agents in group g is L+
g :=∑

p∈Pg
p `pg and that the total allocation to negative agents is L−g :=

∑
p∈Pg

(1 − p) `pg. Let the
cardinality of the group allocation be Lg := L+

g + L−g .

Each allocation is decomposable into allocations for each group. For a group g, we call a group
allocation (`pg)p uniform if `pg = αdpg for some α ∈ [0, 1] and all p ∈ Pg. Another important class
of group allocations are threshold allocations, which do not give any goods to agents in a bucket p
until every agent in a higher-p bucket of the same group receives a full unit of the good. Formally,
there must be a threshold probability p∗ such that `pg = dpg for all p > p∗ and such that `pg = 0 for all
p < p∗, where `p

∗

g can be arbitrary.

2.2 Equalized Odds

Throughout the paper, allocations must satisfy equalized odds, which means that (a) the mean
allocation over the positive agents in g is equal between all groups g that have any positive agents;
and (b) the mean allocation over the negative agents in g is equal between all groups g that have any
negative agents. We refer to the pair (L+

g /D
+
g , L

−
g /D

−
g )— the mean allocation to positive agents

and the mean allocation to negative agents — as the signature of the allocation.

2.3 Fair-Division Axioms for Allocation Algorithms

There have been many decades of work on fair division, spanning settings with both divisible
and indivisible goods [6, 7, 12, 14, 17, 20]. Throughout this literature, desirable properties are
encoded via axioms, which can be either punctual or relational. Punctual axioms such as equitability,
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proportionality [20], and envy-freeness [12] apply to each instance of the fair division problem
separately, and ensure that each agent’s allocation satisfies global or relative valuations. For example,
proportionality states that, given n agents, each agent should receive at least a 1/n fraction of her
value for the entire resource, and envy-freeness states that all agents should value their own allocations
more than any other allocation given to another agent [21]. By contrast, relational axioms such as
resource monotonicity, consistency, and population monotonicity link separate instances of the fair
division problem together and can be thought of as well-behavedness properties. In our model, each
agent desires as much of the good as possible, which means that only uniform allocation satisfies
punctual axioms such as equitability, proportionality, and envy-freeness.1 For this reason, we focus
on the abovementioned relational axioms.

An allocation algorithm satisfies resource monotonicity if increasing k does not decrease any agent’s
allocation. In our model, we assume that the amount of goods to be allocated is fixed a priori. In
practice, however, additional resources might become available during the allocation phase. If the
availability of more resources were to decrease an agent’s allocation, the allocator might find it
difficult to recuperate goods that have already been promised (or distributed). Resource monotonicity
avoids these bad situations.

Consistency says that allocations can be computed separately for subsets, using the share of the good
allocated to them. Formally, for a given classification (d̂pg)g,p and allocation cardinality k̂, let (ˆ̀pg)g,p
define the allocations of an allocation algorithm. Consider a second instance, in which we remove
some agents, i.e., have an allocation (dpg)g,p such that dpg ≤ d̂pg for all buckets (buckets might also be
removed, which we represent by setting dpg = 0). In addition, we reduce the allocation cardinality to
what these agents together received in the previous instance, i.e., have a new allocation cardinality
k :=

∑
g,p d

p
g/d̂

p
g
ˆ̀p
g. Consistency requires that every agent of the second instance receive the same

allocation as in the first, i.e., that `pg = dpg/d̂
p
g
ˆ̀p
g . Notably, assuming both consistency and equalized

odds implies that equalized odds must hold over subpopulations. For instance, fairness between racial
groups would be preserved when considering only the female, senior, or foreign-born subpopulations;
ruling out fairness analogues of Simpson’s paradox. While this would certainly be desirable, we will
show that it comes at an unreasonable price in efficiency.

Finally, population monotonicity mandates that, if we remove some of the agents without changing
the allocation cardinality, the allocation to any remaining agent cannot decrease. In our example of
allocating financial aid, for instance, it is quite likely that students will join another school or drop out
after enrollment. If we want to preserve equalized odds, and if our allocation rule violates population
monotonicity, we might be forced to reduce another student’s allocation, which will be hard to justify.

Note that consistency and resource monotonicity together imply population monotonicity. Indeed, if
we remove some agents together with their allocation, the allocation to the remaining agents does not
change by consistency. Adding the removed goods back can only increase allocations by resource
monotonicity.

3 Geometric Interpretation of Equalized Odds
As observed by Hardt et al. [13], the axiom of equalized odds is most easily understood through
the lens of a geometric interpretation. We adapt and extend their interpretation to our setting and
prove that it encompasses all equalized-odds allocations (which Hardt et al. do not do). The resulting
characterization is employed to prove our axiomatic theorems in Section 4, and gives an algorithm
used in Section 5.

For the time being, focus on a single group g and ignore the cardinality constraint. An allocation to
this group (`pg)p is now only constrained by 0 ≤ `pg ≤ dpg for all p.

Let fg be a function mapping every group allocation to its signature (L+
g /D

+
g , L

−
g /D

−
g ) in [0, 1]2.

Denote the image of fg by Sg, which marks the set of implementable signatures.2 For an example
group in Fig. 1a, the shape of Sg is shown in Fig. 1b. Sg is convex as the image of the convex space
of allocations under the linear function fg . Furthermore, the diagonal (x, x) for 0 ≤ x ≤ 1 is a subset

1A recent manuscript [1] does argue for envy-freeness as a new notion of individual fairness for classification
when preferences are heterogeneous.

2If a group possesses only positive or only negative agents, all average allocations for its type are possible
and it imposes no constraint on the other type. We will thus set Sg := [0, 1]2 in these cases.
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Figure 1: Example group g. D+
g = 20 and D−g = 10.
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Figure 2: Superimposition of S0 and S1. The cardinality line is drawn in green, the optimal solution
is marked by a star.

of Sg, being the image of the uniform allocations. We will restrict our investigation to the area S+
g

“right of” that line, i.e., the set {(x, y) ∈ Sg | x ≥ y}, since the arguments for the other half of Sg are
symmetric. As the intersection of convex sets, S+

g is still convex.

Consider a specific value of p ∈ Pg and the allocation that gives dpg units to bucket p and none to all
other buckets. Applying fg to this allocation gives us a vector vp := (p dpg/D

+
g , (1− p) dpg/D−g ). For

example, in Fig. 1a, the green bar represents the 6 positive agents and 2 negative agents in a bucket 3
4 ,

which is represented in Fig. 1b by a green vector v 3
4
= (6/20, 2/10). Since both components of the

vp are nonnegative, all vectors point in a direction between right (p = 1) and up (p = 0). Because the
slope is proportional to (1− p)/p, the slope of the vp decreases monotonically in p.3 As hinted at in
Fig. 1b, we want to show that the upper border of S+

g is the line (x, x), whereas the lower border can
be constructed by appending the vp in order of decreasing p. Formally, let ag be a function from the
interval [0, Dg] into the set of allocations. For every k, ag(k) is the unique threshold allocation of
cardinality k. Thus, ag(k) determines the smallest p∗ ∈ Pg such that

∑
p>p∗ dpg ≤ k. Then, ag(k)

sets `pg := dpg for all p > p∗, `pg := 0 for all p < p∗, and `p
∗

g := k −
∑

p>p∗ dpg. As illustrated in
Fig. 1c, fg ◦ ag walks along the sequence of the vp. This allows us to formally describe the shape of
S+
g ; we prove this characterization in Appendix A.

Theorem 1. S+
g is the convex set whose border is the union of the diagonal line {(x, x) | 0 ≤ x ≤ 1}

and the image of fg ◦ ag .

Let us return to the full setting with multiple groups, and draw the subsets Sg in the same coordinate
system, as illustrated in Fig. 2. For any global allocation satisfying equalized odds, the group

3For p = 0, we consider the slope to be infinite.
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Figure 3: Illustration for the proof of Theorem 2. The maximum curve is black, and the lower border
of Sg is colored, which allows to track how the curve is permuted.

allocations must be mapped to the same signatures by the corresponding functions fg. Thus, all
these allocations must have a signature in the intersection of the Sg. Conversely, for any point in
the intersection, we can take preimages of that point for each groups and obtain an allocation that is
well-formed and satisfies equalized odds.

The remaining constraint is the cardinality constraint on the allocation. Any point (x, y) corresponds
to allocations that allocate (

∑
gD

+
g )x units to positive agents and (

∑
gD
−
g ) y units to negative

agents. Thus, the total cardinality (
∑

gD
+
g )x+(

∑
gD
−
g ) y of such an allocation must equal k. This

is equivalent to a constraint y = (k − (
∑

gD
+
g )x)/(

∑
gD
−
g ). Geometrically, this constraint has the

shape of a line with negative, finite slope, which we will refer to as the cardinality line (see Fig. 2).
The cardinality line must intersect the line (x, x) at x = k/(D0 +D1), and thus intersects

⋂
g Sg

(even
⋂

g S
+
g ). This demonstrates that an equalized-odds allocation with the given cardinality always

exists.

Note that efficiency,
∑

g L
+
g , is proportional to the x coordinate of a point. Thus, efficiency is

optimized by selecting an allocation corresponding to the rightmost point in the intersection of the
cardinality line and

⋂
g S

+
g . If we trace the lower border of

⋂
g S

+
g , i.e., we keep following the

uppermost of the lower borders of the Sg, we obtain a convex monotone maximum curve. The
signature of the most efficient allocation is then simply defined by the intersection of the cardinality
line and this curve.4 This description directly translates into a polynomial-time algorithm.

4 Combining Equalized Odds with Fair Division Axioms
We investigate the compatibility between equalized odds and the three fair division axioms formally
introduced in Section 2.3. All four properties can be satisfied simultaneously by allocating uniformly
across all groups. Thus, the compatibility must be measured in terms of how much efficiency must be
sacrificed to simultaneously guarantee the properties.

This is particularly interesting since, if we do not insist on equalized odds, the most efficient allocation
algorithm (which simply allocates to buckets in order of decreasing p) immediately satisfies resource
monotonicity, consistency, and population monotonicity. Thus, the fair division axioms in question
do not have an inherent cost to efficiency, in contrast to punctual axioms in related settings [4, 9].
However, two of them will drastically lower efficiency when imposed in addition to equalized odds
with respect to the optimal equalized-odds allocation as a baseline.

4.1 Resource Monotonicity

Fortunately, we can find equalized-odds allocations that satisfy resource monotonicity for free, i.e.,
while retaining maximum efficiency.
Theorem 2. There is an allocation algorithm that satisfies equalized odds and resource monotonicity,
which, on every input, leads to maximum efficiency among all equalized-odds algorithms.

4This point is unique because of the possible slopes for the cardinality line and the line segments making up
the maximum curve.
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Proof sketch. We sketch the argument here, and relegate the formal proof to Appendix B. As we
described in Section 3, the signature of the optimal equalized-odds allocation is defined by the
intersection of the cardinality line and the maximum curve. Increasing the allocation cardinality shifts
the cardinality line to a parallel position further to the right. Since the maximum curve is monotone
increasing, and since the cardinality line has negative slope, this will shift the intersection further
to the right on the maximum curve. This implies that the average allocations to either type cannot
decrease, but we need to ensure that the allocation inside of each group does not reduce the allocation
to any single bucket. This does not hold for most natural ways to implement the signature.

It suffices to focus on a single group. We need to associate points on the maximum curve with group
allocations of matching signature such that the allocation to any bucket increases monotonically along
the curve. It is sufficient to do so for the corners of the maximum curve; convex combinations of the
corner allocations directly implement the signatures of a line segment while preserving monotonicity.
Geometrically, we can specify such group allocations as a permutation of the fg ◦ ag curve, where
permutation means that we cut the curve into finitely many segments, reorder them, and translate
them to form a single connected curve. For example, the colored curve in Fig. 3c is a permutation of
the one in Fig. 3a. The permuted curve should touch all corners of the maximum curve. Then, at a
corner of the maximum curve, allocate to each bucket p its demand multiplied by the fraction of line
segments with corresponding slope that appear before the vertex on the permuted curve. This ensures
that the allocation implements the desired signature, and that the allocations increase bucket-wise
between corners.

In Lemma 5 in Appendix B, we describe a recursive algorithm that produces such a reordering.
Figure 3 shows this algorithm on an example. In every recursion step, it finds a section of the lower
curve that matches the first line segment of the maximum curve, swaps this segment to the left, and
then recurses on the subcurves to the right of the intersection. The middle section can be found
efficiently without resorting to numerical search; an implementation of the algorithm is included in
our accompanying code.

4.2 Consistency

Unfortunately, the situation is less rosy for consistency: The only allocation rule that satisfies both
consistency and equalized odds is the uniform allocation.

Theorem 3. Let A be an algorithm that guarantees equalized odds and consistency. Then, A will
allocate uniformly on any given instance.

Proof. We refer to the given instance as Instance I. Obtain Instance II by adding two agents with
probability label 1

2 to each group and by setting the new cardinality constraint to k (n+2 #groups)/n,
such that the average allocation per agent remains the same. Now, every group contains positive and
negative agents, and the average allocations ρ+g := L+

g /D
+
g and ρ−g := L−g /D

−
g exist. By equalized

odds, all ρ+g equal a single constant ρ+, and all ρ−g equal a single constant ρ−.

Fix any bucket (g, p) with a probability label p > 0. We want to show that this bucket will be
allocated ρ+ dpg units in Instance II: Construct an Instance IIIg,p from II by removing all buckets
except for (g, p) from g, along with their allocations. By consistency, this does not change the
allocation to any other group; thus, the ρ+ of the other groups are unchanged. Because (g, p) is now
the only partially positive bucket, ρ+g is just the per-agent allocation of (g, p). By equalized odds,
(g, p) is allocated ρ+ dpg units in IIIg,p. By consistency, (g, p) receives the same amount in Instance II.
Symmetrically, any bucket (g, p) with probability p < 1 is allocated ρ− dpg units in Instance II.

In any given group g, fix the bucket with label 1
2 and let their common allocation be `1/2g . Since

0 < 1
2 < 1, by the above, ρ+ = `

1/2
g /d

1/2
g = ρ−. It follows that every single bucket (g, p) in

Instance II is allocated ρ+ dpg = ρ− dpg units, so the allocation is uniform. If we remove the inserted
agents along with their allocation, we recover Instance I with the original budget k. By consistency,
the allocation in Instance I was uniform.

4.3 Population Monotonicity

For population monotonicity, the situation is also fairly bad, albeit less so than for consistency. In the
following theorem, whose proof appears in Appendix C.1, we show that any algorithm satisfying
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Figure 4: Efficiency of three different equalized-odds algorithms on the FICO dataset, as a function
of k and as a fraction of the optimal allocation without fairness constraints.

population monotonicity and equalized odds will, on certain inputs, incur arbitrarily high loss in
efficiency over the optimum equalized-odds allocation.
Theorem 4. Let A denote an allocation algorithm satisfying equalized odds and population mono-
tonicity. Then, A does not give a constant-factor approximation to the efficiency of the optimal
equalized-odds algorithm.

Let us compare this result with Theorem 3, whose assertion holds for any instance. By contrast,
Theorem 4 is a worst-case result, and so it leaves room for algorithms satisfying population mono-
tonicity and equalized odds that are significantly more efficient than a uniform allocation in practice.
In fact, in Appendix C.2 we do construct a non-uniform algorithm with these axiomatic properties
that (slightly) outperforms uniform allocations. However, we will shortly see that, on a real dataset,
requiring population monotonicity and equalized odds inevitably leads to efficiency close to uniform
allocations.

5 Empirical Results

We evaluate our approach on a dataset relating the FICO credit scores of 174 047 individuals to credit
delinquency. The dataset is based on TransUnion’s TransRisk scores, and was originally published
by the Federal Reserve [2]. We use a cleaned and aggregated version made publicly available by
Barocas et al. [3] at https://github.com/fairmlbook/fairmlbook.github.io/tree/master/code/
creditscore. For each of four races (white, black, Hispanic, Asian), the individuals are partitioned
into buckets for 198 credit score values. For each bucket, we can compute its size and fraction of
non-defaulters. Our code is publicly available at https://github.com/pgoelz/equalized.

For different numbers k of loans to be given out, Fig. 4 shows the efficiency loss entailed by insisting
on certain fairness properties. As a baseline, we use the optimal non-fair allocation that greedily
allocates to agents in descending order of p, regardless of their race. Insisting on equalized odds —
and, by Theorem 2, even additionally insisting on resource monotonicity — only incurs a small
efficiency penalty of less than 3.5%. Even uniform allocation loses at most 30% efficiency since 70%
of agents in the dataset do not become delinquent. The higher k becomes, the more even the optimal
non-fair algorithm is forced to allocate to agents that might default, and the lower the relative loss
of uniform allocation becomes. Nevertheless, as long as k is not a large fraction of the number of
agents, we suspect the price of consistency to be unacceptably high — as is evident from the fact that
banks use credit scoring at all.

The most interesting line is the third algorithm. Since we do not have a characterization of the
best algorithms satisfying equalized odds and population monotonicity, we test an algorithm that,
on every instance, will be at least as efficient as every such algorithm. This algorithm is based
on the observation that, if we remove all buckets from a group except for one with probability in
(0, 1), any algorithm satisfying equalized odds must give this bucket its proportional share of k
in the resulting instance. If population monotonicity is satisfied, this gives us an upper bound on
the allocation to the bucket in the original instance. By maximizing for efficiency subject to these
constraints and equalized odds with a linear program, we obtain the desired upper bound on every
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equalized-odds algorithm that satisfies population monotonicity. As the graph shows, insisting on
population monotonicity forces us into an efficiency dynamic that is essentially that of uniform
allocation. While there is a gap of a few percentage points between the two curves, part of it might
be explained by the looseness of our upper bound. Just as in the case of consistency, population
monotonicity seems to be unacceptably costly unless we can satisfy a large fraction of the demand.

6 Discussion

We have shown that equalized odds in a setting with cardinality-constrained resources is perfectly
compatible with the classic fair division axiom of resource monotonicity. However, our theoretical
and empirical results imply that equalized odds is grossly incompatible with consistency and (more
importantly) population monotonicity.

Why is that a problem? On a practical level, the paradoxes these axioms are meant to prevent can lead
to real difficulties. For example, as mentioned in Section 2.3, a violation of population monotonicity
may give rise to a situation where we need to decrease a student’s financial aid because another
student declined to accept aid. On a conceptual level, it is hard to justify and explain the design of
allocation algorithms that behave in such counter-intuitive ways.

In summary, our results tease out new tradeoffs between notions of fairness. We also believe our
work strengthens the case against equalized odds as a tenable standard for fair machine learning.
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A Proof of Geometric Characterization
Proof. Clearly, the image of fg ◦ ag lies within Sg = im(fg). Moreover, it intersects the line
(x, x) in the points fg(ag(0)) = (0, 0) and fg(ag(Dg)) = (1, 1). Since the slope of the vectors
increases in their layout from left to right, im(fg ◦ ag) must lie under (x, x), just like a function
with increasing slope is convex. Thus, im(fg ◦ ag) ⊆ S+

g . Because of the rising slopes of the lower
border and the previous observations, the closed curve induced by walking counter-clockwise along
im(fg ◦ ag)∪ {(x, x) | 0 ≤ x ≤ 1} only has left turns. As a consequence, the interior of the curve is
convex.

It remains to show that the convex hull of im(fg ◦ ag) ∪ {(x, x) | 0 ≤ x ≤ 1} encompasses
S+
g . Indeed, let (x, y) ∈ S+

g be given, and let the allocation p 7→ `pg be a preimage under fg. By
assumption, x ≥ y, and we may assume without loss of generality that x > y. Let p 7→ ˆ̀p

g be the
uniform allocation that sets ˆ̀p

g :=
Lg

Dg
dpg for all p. Clearly, this allocation is mapped by fg to the

signature (x̂, ŷ) := (Lg/Dg, Lg/Dg). Finally, let p 7→ ˜̀p
g be the allocation produced by ag(Lg) and

let (x̃, ỹ) be its image under fg .

As Fig. 5 shows, the images under fg of all three allocations lie on a line, because they all satisfy the
equation

D+
g x+D−g y = Lg. (1)

To show that (x, y) lies inside of the convex hull, it is enough to show that it lies in between the two
other points. Since x̂ = ŷ and x > y, since both points satisfy Eq. (1), and since D+

g and D−g are
positive, we know that x̂ < x. It remains to show that x̃ ≥ x. Let p∗ be the probability used in the
definition of ag(Lg). If ˜̀pg = dpg for all p > p∗ and ˜̀p

g = 0 for all p < p∗, the allocations coincide
and we are done. Else, by going from p 7→ `pg to p 7→ ˜̀p

g, we just move parts of the allocation from
probabilities p ≤ p∗ to probabilities p ≥ p∗. The cardinality of the allocation must stay the same by
Eq. (1). Since, to calculate L+

g , the allocation for every probability p is counted with weight p, this
moving can only increase L+

g , thus x̃ ≥ x. Thus, (x, y) lies in the convex hull, and im(fg ◦ ag) is
indeed the lower border of S+

g .
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Figure 5: Continuation of the example in Fig. 1. Each (x, y) ∈ S+
g has points on the upper and lower

border of S+
g with equal cardinality.

B Formal Proof of Theorem 2

Recall that our goal is to define an allocation mechanism that, given a signature of the optimal
equalized-odds allocation, produces an allocation that satisfies this signature and ensures that the
allocation to any bucket increases when additional resources are added.

Let us first formally define the maximum curve m. For every value k, we intersect the corresponding
cardinality line with the lower borders of all Sg . We select the leftmost of these intersection signatures
to be m(k). Note that, at any point, the curve follows the shape of the lower border of some Sg,
and that it may only change the Sg it traces at intersection points between these lower borders. It
follows that the curve is still a finite polygon chain, that its tangential angle exists except for finitely
many exceptions, that this angle is between 0 (right) and π/2 (up) where it exists, and that the angle
increases along the curve where it exists. For every cardinality constraint k, the signature produced
by the optimal equalized-odds algorithm is exactly m(k).

For each group g, we would like to implement the signature m(k), for any given k, such that
resource monotonicity is not violated inside of this group. Formally, we are looking for a monotone
function jg : [0, D] →

∏
p∈Pg

[0, dpg] such that fg(jg(k)) = m(k) for all k. Note that it suffices
to define such a function only for the k that correspond to corners of m, as we can interpolate
between these corners to obtain well-behaved solutions for other values of k. Indeed, if the graph of
m(θ k1+(1− θ) k2) = θm(k1)+ (1− θ)m(k2) for two such values of k and all 0 ≤ θ ≤ 1, setting
jg(θ k1 + (1− θ) k2) = θ jg(k1) + (1− θ) jg(k2) will inherit monotonicity and fg(jg(k)) = m(k)
if these properties hold for k1 and k2.

We will define such jg by reordering the curve ag, which we define later. First, note that ag
is (component-wise) Lipschitz-continuous, since an increase in k by ε will change each agent’s
allocation by at most ε. Thus, ag is absolutely continuous, and it holds that ag(k) =

∫ k

0
a′g(k) dk

(a Lebesgue integral) for all k, where the derivative a′g exists everywhere except for finitely many
exceptions. We call a function r : [0, Dg) → [0, Dg) a reordering for g if it is a bijection and
if there exist 0 = p0 < p1 < · · · < pn = Dg such that, for all i ∈ {0, 1, . . . , n − 1} and
x ∈ [pi, pi+1), it holds that r(x) = r(pi) + (x − pi). Intuitively, r is a reordering of a partition
of [0, Dg) into finitely many subintervals. We say that r induces a permutation of ag, which is the
function r[ag] : [0, Dg] →

∏
p∈Pg

[0, dpg], where r[ag](k) =
∫ k

0
a′g(r(k)) dk for all k < Dg, and

r[ag](Dg) = (dpg)p. This function is absolutely continuous on [0, Dg) and remains so through the
addition of the point Dg with its left limit. Since r[ag] is obtained by integrating nonnegative values
from a′g , it is still monotone.

Let k1 < k2 < · · · < kn be the values of k corresponding to corner points of m. By Lemma 5, we
can find a reordering r and s1 < s2 < · · · < sn such that fg(r[ag](si)) = m(ki) for all i. If, for
all groups g, we set jg(ki) := r[ag](si) for all i and interpolate linearly between these points, this
defines an allocation algorithm that is resource monotone. Moreover, it still satisfies equalized odds
without efficiency losses, since the optimal signature is always implemented.
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Lemma 5. Let c and d be finite polygon chains in R2, represented as simple curves. Let all their
tangential angles lie between 0 and π/2, and let these angles increase monotonically along the curves
(where defined). Let c and d both start in a common point and end in a common point, and let d lie
below c. Then, there exists a reordering r of the domain of d such that r[d] visits all corner points of
c.

Proof. By scaling, we may assume without loss of generality that c and d both have the domain [0, 1],
that c(0) = d(0) = (0, 0), and that c(1) = d(1) = (1, 1). We prove the claim by induction on the
number of line segments in c. The induction step is illustrated in Fig. 3.

If there is only a single line segment, the identity reordering satisfies the claim.

Else, let kseg be the preimage of the first corner of c, and let (ξseg , υseg) := c(kseg) be the x and
y dimension of this segment. Denote the x and y components of d by dx and dy , respectively. By our
assumption on the angle of d, both functions increase monotonically. For any x coordinate 0 ≤ ξ ≤ 1,
let d−1x (ξ) denote the smallest 0 ≤ k ≤ 1 such that dx(k) = ξ. There is always at least one such k
by the intermediate value theorem, and this k is unique for all ξ < 1 (there can be multiple k on a
final, upward-facing line segment).

Define a function h : [d−1x (ξseg), 1] → R≥0 by setting h(k) := dy(k) − dy(d−1x (dx(k) − ξseg)).
Geometrically, h slides a window of width ξseg over the graph of d and measures the growth of
the curve in y direction along this window. Since, by assumption, d lies below c, we know that
h(d−1x (ξseg)) ≤ υseg . At the same time, the average slope of both c and d is 1. The slope of c’s first
line segment can be at most that, since the slope increases along the curve. Similarly, the average
slope of the window measured by h(1) must be at least 1.

It follows that h(1) ≥ υseg . Since h is continuous, by the intermediate value theorem, there is
some kright such that h(kright) = υseg . If we set kleft := d−1x (dx(k) − ξseg), we know that
dx(kright)− dx(kleft) = ξseg and dy(kright)− dy(kleft) = υseg .

Define a reordering r′ : [0, 1)→ [0, 1) by setting

r′(k) =


kleft + k k ∈ [0, kright − kleft)
k − (kright − kleft) k ∈ [kright − kleft , kright)
k k ∈ [kright , 1)

,

i.e., by swapping the intervals [0, kleft) and [kleft , kright). It must hold that r′[d](kright − kleft) =
(ξseg , υseg).

Now concentrate on the restriction of r′[d] to the interval [kright − kleft , 1]. It is still a polygon chain,
and, since its tangential angles all come from d, they lie between 0 and π/2. Since we only took out a
middle segment in the succession of angles, the angles still increase monotonically along the curves.
Restrict c to [kseg , 1]. Then, the two curves have a common starting point (ξseg , υseg) and endpoint
(1, 1). Finally, the restriction of r′[d] will still lie below the restriction of c because the only changed
part took its derivatives from a prefix of d, which used to fit below the flattest stretch of c, so it will
now fit under a steeper stretch of c. These observations allow us to apply the induction hypothesis,
and obtain a reordering r′′ (without the scalings described at the beginning of this proof). Define a
new reordering r to be equal to r′ on [0, kright − kleft), and to equal r′ ◦ r′′ on the remaining interval.
This leaves us with a reordering such that the graph of r[d] visits all corners of c.

C Equalized Odds and Population Monotonicity

C.1 Inapproximability

Theorem 4. Let A denote an allocation algorithm satisfying equalized odds and population mono-
tonicity. Then, A does not give a constant-factor approximation to the efficiency of the optimal
equalized-odds algorithm.

Proof. Let a be a large integer, to be chosen later. Let Instance I contain two groups, 0 and 1. Group 0
contains a bucket labeled a−1

a with a many agents and a bucket labeled 0 with 2 a agents. Group 1
contains a bucket labeled 1 with a single agent and a bucket with 2 a2 − a− 1 many agents labeled 0.
Set k := 2 a.
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What efficiency can the optimal equalized-odds algorithm obtain in this instance? Since Group 1 is
perfectly classified, the algorithm’s behavior is determined by the intersection of the cardinality line
and the lower border of S0. The cardinality line is determined by 2 a = a x+(1+2 a+2 a2−a−1) y =
a x+ (2 a2 + a) y. The first segment of the border is induced by threshold allocations that only give
to the first bucket of Group 0. If we allocate 0 ≤ t ≤ a units to this bucket, we get x = t/a and
y = t/(a (2 a+1)). Plugging these equations into each other, we obtain an intersection at x = 1 and
t = a. This t is in the permissible bounds for the first segment, which means that we indeed have
found the intersection of cardinality line and lower border. The optimal equalized-odds algorithm
will achieve a total efficiency of a x = a, a− 1 of which will be obtained from Group 0.

Now consider Instance II, in which Group 1 remains the same but we remove the bucket with the label
0 from Group 0. Since Group 0 contains a single bucket (labeled with probability (a−1)/a /∈ {0, 1}),
its convex shape is exactly the diagonal line. Thus, the mean allocation for positive agents must equal
the mean allocation for all agents, i.e., 2 a/(2 a2 + 2 a) = 1/(a + 1). All positive agents together
receive a/(a+ 1) units.

Assume that A guarantees an α-approximation of the efficiency obtained by the optimal equalized-
odds algorithm, where α > 0. Choose a ≥ α−1. Then, in Instance I, A must allocate at least αa ≥ 1
units to the positive agents. However, if we remove the 0 bucket from Group 0, we obtain Instance II,
in which the same positive agents receive strictly less than one unit of the good. This contradicts
population monotonicity.

C.2 Non-Uniform Algorithm Satisfying Equalized Odds and Population Monotonicity

Proposition 6. There exists an allocation algorithm that satisfies equalized odds and population
monotonicity and that dominates uniform allocation in terms of achieved efficiency.

Proof. We obtain these properties by maximizing for efficiency subject to equalized odds and the
constraint that every agent’s allocation must lie in [k/(n + 1

2 ), k/(n −
1
2 )]. Let’s take our usual

diagram. We definitely give k/(n + 1
2 ) to every agent, so we know that we start at the point

(k/(n+ 1
2 ), k/(n+ 1

2 )). From here on, the situation is very similar to the original “most efficient
equalized-odds” one, just that we shrink each agent to accept at most (k/(n − 1

2 ) − k/(n + 1
2 ))

additional units of the good instead of one unit.5 Again, this gives us a convex set of implementable
signatures that starts at (k/(n+ 1

2 ), k/(n+ 1
2 )) and ends at (k/(n− 1

2 ), k/(n−
1
2 )). We know that

the cardinality line crosses the intersection of these spaces, because it must run through the point
(k/n, k/n). If we take the point where the cardinality line crosses the border of the intersection of
convex sets, this defines our allocation.

This algorithm satisfies equalized odds, since we still select a single signature for all groups from
the diagram. Why does it satisfy population monotonicity? Have a Instance I, and get a Instance II
by adding additional agents to I. k is the same between both instances; let the number of agents be
denoted by nI and nII, respectively. By assumption, nII ≥ nI + 1. If we run the algorithm on both
instances, we are guaranteed that every agent in Instance I receives at least k/(nI +

1
2 ) units. If we

run it on Instance II, every agent receives at most k/(nII − 1
2 ) ≤ k/((nI + 1) − 1

2 ) = k/(nI +
1
2 )

units. Thus, no agent can receive more in Instance II than in Instance I; population monotonicity
must hold.

5To be precise, min(k/(n− 1
2
), 1)− k/(n+ 1

2
) in case n− 1

2
< k.
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