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Abstract
We study the fair allocation of indivisible goods across groups of agents, where each agent fully enjoys

all goods allocated to their group. We focus on groups of two (couples) and other groups of small size.
For two couples, an EF1 allocation — one in which all agents find their group’s bundle no worse than the
other group’s, up to one good — always exists and can be found efficiently. For three or more couples,
EF1 allocations need not exist.

Turning to proportionality, we show that, whenever groups have size at most k, a PROPk allocation
exists and can be found efficiently. In fact, our algorithm additionally guarantees (fractional) Pareto
optimality, and PROP1 to the first agent in each group, PROP2 to the second, etc., for an arbitrary
agent ordering. In special cases, we show that there are PROP1 allocations for any number of couples.

1 Introduction
Four siblings — Anna, Ben, Carmen, and Dave — jointly own a cottage on the coast and are currently deciding
which sibling’s family will get to stay in the cottage in which weeks of the year. Each sibling i has a utility
ui(α) ≥ 0 for each week α; for example, Anna prefers Spring weeks over Summer due to milder temperatures,
and Ben would particularly value being at the cottage for July 4. Assume (as we will throughout the paper)
that a sibling’s utility for a set B of weeks is additive (i.e., that ui(B) =

∑
α∈B ui(α)) and that the siblings

are treating the weeks as indivisible goods, i.e., they don’t want to allocate fractions of a week or assign a
week to several families.

To solve the siblings’ predicament as stated so far, the field of fair division offers allocation algorithms [e.g.,
CKM+19; LMMS04] with compelling axiomatic guarantees. In particular, algorithms like envy-cycle elimina-
tion and Maximum Nash welfare ensure envy freeness up to one good (EF1). EF1 means that each sibling i
finds their assigned weeks Bi to be at least as valuable as the weeks Bj assigned to any other sibling, at least
when removing some week α from Bj : ui(Bi) ≥ mingood α ui(Bj \ {α}).1 A second key axiom, proportionality
up to one good (PROP1), states that each sibling i receives at least their proportional share of their utility for
all weeks, at least when adding some week α: maxweek α ui(Bi ∪ {α}) ≥ ui(M)

n , where n = 4 is the number
of siblings and M the set of all weeks.

Our scenario deviates from the classic fair division setting in that the siblings’ spouses also have utilities,
which need not align with their partners’. An allocation of weeks that Anna finds fair may still make her
husband Alex envy another sibling or perceive their family’s assignment as falling short of proportionality. Is
it possible to allocate the weeks over the families so that axioms such as EF1 and PROP1 hold from the
perspectives of all four siblings and their respective spouses? Equivalent fair division problems may arise in
splitting an inheritance between families or dissolving business partnerships, whenever the entities receiving
allocations consist of two persons whose preferences should be satisfied.

The question we raise above fits into the model of group fair division [KSV20; MS17], but little is known
for small groups such as couples. Kyropoulou et al. [KSV20] show that EF1 allocations need not exist for
two groups with three members each and show that an (as of yet, unproven) graph conjecture by Jafari and
Alipour [JA17] would imply EF1 existence for two couples. With the basic question of EF1 existence for two
couples unresolved, Kyropoulou et al. instead focus on how much axioms like EF1 must be relaxed to be

1The strengthening of this axiom without the removal of a good, envy freeness, is not always satisfiable for indivisible goods.
E.g., if all siblings only have positive utility for a single week, the siblings who do not receive this week will always be envious.

1



satisfiable for two large groups. Meanwhile, the question of whether EF1 might exist for arbitrarily many
couples has remained open.

In this paper, we aim to answer the following question:

For fair allocation over couples, and groups with few members more broadly, can we always guar-
antee the existence of EF1 or PROP1 allocations? If no, can we guarantee slight approximations?

A second motivation is that this question touches on the fundamental combinatorics of fair allocations to
individuals. Indeed, fix a number n of agents and m of indivisible goods, and consider the set A of all nm

allocations of goods across agents 1 through n. Each vector of utility functions u = (u1, . . . , un) determines a
subset Fu ⊆ A of allocations that are EF1 (or PROP1 etc.) for these utilities; call the family of all such sets
F . An allocation to n couples is EF1 iff it lies in Fu for the utilities u of the first partners in each couple and
in Fu′ for the second partners’ utilities u′. That is, EF1 allocations always exist for couples iff any two sets
Fu ∈ F intersect, i.e., if F is an intersecting family [Juk11].

1.1 Our Techniques and Results
We begin by proving in Section 3.1 that EF1 allocations always exist for two couples, proving a case left open
by Kyropoulou et al. [KSV20] without relying on the graph conjecture mentioned above. Our proof takes a
different path, by rounding a fractional allocation computed via an unconventional linear program, which
also yields a polynomial-time algorithm. Though there are only a few ways of rounding this LP, our proof
that one of these roundings must satisfy EF1 requires a non-trivial combinatorial argument. In Section 3.2,
we prove that EF1 cannot be guaranteed for three (or more) couples.

Since EF1 is not achievable for more than two couples, we turn our focus on PROP1 and its variants
in Section 4. In the setting of arbitrarily many couples, we can guarantee the slightly weaker guarantee of
PROP2, in addition to fractional Pareto optimality, an axiom of allocation efficiency. This follows from
our main result — an efficient, iterative-rounding algorithm that works for groups of arbitrary sizes, and
guarantees PROP1 to the first member of each group, PROP2 to the second, etc., according to an arbitrary
ordering of group members. In various special cases, we can show that PROP1 allocations exist for arbitrarily
many couples, for example if utilities are dichotomous and all agents value the same number of goods. PROP1
allocations need not exist for groups of three agents.

In Section 5, we study fair division among couples empirically, by taking utilities from real-world allocation
problems submitted to Spliddit [GP14] and pairing up the agents. EF1 and PROP1 allocations exist for
every single fair division problem we study, suggesting that they are ubiquitous in practice. We also study
the iterative rounding algorithm and find that it almost always provides PROP1 for all agents, and even EF1
in most cases.

1.2 Related Work
Fair division among groups was independently introduced by Manurangsi and Suksompong [MS17], and
Segal-Halevi and Nitzan [SN19], the former studying indivisible goods and the latter divisible goods. This line
of work has since been expanded, with several works exploring fair allocation in both divisible and indivisible
settings [BLL+24; CLS25; GLM+18; KSV20; MM25; MS22; SS20; SS23; Suk18]. In contrast to our work,
most research on group fair division with indivisible goods focuses on asymptotic analysis for large groups.

The paper by Bu et al. [BLL+25] is closely related to our work. While their motivation for studying two
sets of utilities does not make reference to groups, their setting is equivalent to fair division among couples.
Concurrently to us,2 Bu et al. [BLL+25] also show that EF1 allocations exist for two couples. Their argument
makes heavy use of combinatorial results to show EF1 existence even for general monotone valuations.

They study proportionality as well, proving the existence of PROP-O(log(n)) allocations for additive func-
tions, where n is the number of couples. Our iterative rounding algorithm improves the gap in proportionality
to a constant (PROP2) and naturally extends to arbitrary group sizes.

2An earlier version [BLL+24] relied on the conjecture by Jafari and Alipour [JA17] to prove EF1 for two couples. The very
recently revised preprint [BLL+25] removes this assumption and includes an algorithm for additive utilities.
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2 Preliminaries
A group fair division instance consists of a set of goods M = [m] = {1, . . . , m}, a set G of n ≥ 2 groups of
agents, and the agents’ valuations. For a group g ∈ G, we use |g| to denote the number of agents in that
group. We refer to the i-th agent in g as (g, i) for 1 ≤ i ≤ |g|. Each agent (g, i) has a value ugi(α) for each
good α ∈M , which induce an additive valuation function ugi(B) :=

∑
α∈B ugi(α) over sets of goods B. We

say that the agent’s valuation is binary if ugi(α) ∈ {0, 1} for all α ∈M .
A fractional allocation is a vector x ∈ [0, 1]M×G , where xαg denotes the fraction of good α assigned

to group g, such that
∑

g∈G xαg = 1 for each α ∈ M . If x ∈ {0, 1}M×G , we call it a (discrete) allocation.
Equivalently, we represent an allocation as a partition of the goods into bundles {Bg}g∈G , where Bg is the
bundle group g receives. An allocation is balanced if

∣∣|Bg| − |Bg′ |
∣∣ ≤ 1 for all g, g′ ∈ G. Since all agents in g

fully enjoy the goods in their bundle Bg, agent (g, i)’s utility for such an allocation is ugi(Bg). We linearly
extend utilities to fractional allocations so that (g, i)’s utility for allocation x is

∑
α∈M xα,gui(α).

For any k ≥ 0, an allocation {Bg}g∈G is

• envy-free up to k goods (EFk) for an agent (g, i) if, for any g′ ∈ G, there is a set B ⊆ Bg′ such that
|B| ≤ k and ugi(Bg) ≥ ugi(Bg′ \B).

• proportional up to k goods (PROPk) for an agent (g, i) if there exists a set B ⊆ M \ Bg such that
|B| ≤ k and ugi(Bg ∪B) ≥ ugi(M)/n.

An allocation is envy-free (EF) for an agent if it is EF0 and proportional (PROP) if its PROP0. We say an
allocation is EFk if it is EFk for every agent, and analogously for EF, PROPk, and PROP. EF and PROP
also naturally extend to fractional allocations.

A fractional allocation x Pareto dominates another fractional allocation x′ if, for all agents (g, i), ugi(x) ≥
ugi(x′) and if this inequality is strict for at least one agent. A fractional allocation x is fractionally Pareto
optimal (fPO) if it is not Pareto dominated by any other fractional allocation. Note that, for a discrete
allocation, being fPO implies the more classic axiom of Pareto optimality (i.e., not being Pareto dominated
by any discrete allocation).

Linear Programming. We recall some notions from linear programming. A set P = {x ∈ Rn : Ax ≤ b}
for some A ∈ Rm×n, and b ∈ Rm is a polyhedron, and a bounded polyhedron is called a polytope. A point
z ∈ P is called a Basic Feasible Solution (BFS) if there are n linearly independent rows of A such that Az ≤ b
holds with equality in these n rows. Linear Programming (LP) consists of maximizing (or minimizing) a
linear function over a polyhedron, i.e., max{cT x : Ax ≤ b, x ∈ Rn}. We repeatedly use:

Proposition 2.1 ([BT97, Thm. 2.8]). If P is a non-empty polytope, there exists a BFS that achieves
max{cT x : x ∈ P} for a given c ∈ Rn.

Such an optimal BFS can be found in (weakly) polynomial time using the ellipsoid method [Kha80].

3 EF1 Among Couples
In this section, we study EF1 allocations for couples, i.e., groups g that all have size 2. For n = 2 couples, we
show that the “gold standard” [FSVX19] of EF1 can be achieved even when we must satisfy twice as many
agents per bundle, compared to the classic, individual setting. However, this positive result does not extend
further, as we prove that EF1 allocations may not exist for n ≥ 3 couples.

3.1 Existence of EF1 with Two Couples
In this part, we consider the case with two groups, which we call the first group f and the second group
s. Kyropoulou et al. [KSV20] proved that a balanced EF1 allocation always exists when (|f |, |s|) = (2, 1),
and left the existence of such an allocation for (|f |, |s|) = (2, 2) as an open question, which we answer in the
affirmative.

Our high-level approach is to round an appropriate fractional allocation into an EF1 (discrete) allocation.
Starting from a fractional allocation is promising because envy freeness is always achievable in this domain
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(say, by splitting each good equally between groups). Broadly speaking, fractional allocations x are easiest to
round if they are already “almost discrete” (i.e., most entries are 0 or 1). In such cases, we only need to
round the few remaining fractional entries to 0 and 1, which yields a limited number of discrete allocations to
reason over, all of which are still close to x and might therefore be “almost” envy-free.

The most direct attempt at pursuing this approach would be to round a BFS from the polytope of
envy-free allocations, which is defined as follows, where xα is the share of good α given to the first group:∑

α∈M xα ufi(α) ≥
∑

α∈M (1− xα) ufi(α) i = 1, 2∑
α∈M (1− xα) usi(α) ≥

∑
α∈M xα usi(α) i = 1, 2

0 ≤ xα ≤ 1 ∀α ∈M.

Using a BFS of this polytope allows us to obtain an almost discrete allocation. Indeed, since there are m
variables, m constraints must be tight in a BFS, and hence at least m− 4 constraints of the shape 0 ≤ xα or
xα ≤ 1 are tight. This implies that at most four goods α are allocated fractionally (i.e., 0 < xα < 1), leaving
24 = 16 ways of rounding.

Unfortunately, a BFS of this polytope may not have a way to be rounded into an EF1 allocation. For
example, consider the following valuations over goods {1, 2, 3, 4}:

valuation 1 2 3 4
uf1 1 0 0.1 0.1
uf2 0 1 0.1 0.1
us1 0.5 0.5 0.1 0.1
us2 0.2 0 0.5 0.5

In this case, one BFS3 allocates a 3/5 fraction of goods 1 and 2 to group f , and the rest of 1 and 2 plus
the entirety of 3 and 4 to group s. But no way of rounding the fractional goods leaves all agents EF1: agent
(f, 1) requires good 1 to be given to f , (f, 2) requires the same for good 2, but giving both to f leaves (s, 1)
envious.

To obtain a working rounding argument, we devise an alternative polytope whose BFS has even fewer
fractional variables, and whose roundings are all EF1 for agent (f, 1), leaving us with one fewer agent to
worry about. For this, assume w.l.o.g. that the number of goods m is even (otherwise, we add a dummy
good with value 0 for every agent) and that the goods are ordered according to (f, 1)’s valuation, i.e.,
uf1(1) ≥ · · · ≥ uf1(m).

We restrict ourselves to allocations in which each group receives exactly one out of the goods {1, 2}, one
out of {3, 4}, . . . , and one out of {m− 1, m}. This structure is inspired by Kyropoulou et al. [KSV20], who
observe that any allocation with this structure is EF1 for (f, 1), allowing us to focus on satisfying EF1 for
the remaining three agents. The structure also ensures balancedness.

This structure naturally generalizes to fractional allocations by ensuring that each group receives a total
of one unit from each pair {2j − 1, 2j} (for 1 ≤ j ≤ m/2). Specifically, if the first group receives a fraction yj

of good 2j − 1, it receives 1− yj of good 2j.
The polytope of fractional allocations of this structure, which are furthermore EF for the three remaining

agents, can be written as follows:∑
j∈[m/2]

(2yj −1) uf2(2j−1) + (1−2yj) uf2(2j) ≥ 0

∑
j∈[m/2]

(1−2yj) usi(2j−1) + (2yj −1) usi(2j) ≥ 0 i = 1, 2

0 ≤ yj ≤ 1 j = 1, . . . , m/2.

A BFS of this polytope has at most three fractional values. We avoid one more fractional value and
simplify the argument by not only requiring EF, but maximizing the minimum gap d by which any agent
prefers their bundle over the other. We believe that this trick for eliminating one more fractional variable can
be useful for other settings as well.

max d

3Specifically, the EF fractional allocation with maximum utilitarian welfare.
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Figure 1: Illustration of y∗. Each good is paired with the good next to it. The bright, solid portion of a box
represents the fraction of the good a group receives, while the faded portion represents the fraction allocated
to the other group.

s.t.
∑

j∈[m/2]

(2yj −1) uf2(2j−1) + (1−2yj) uf2(2j) ≥ d

∑
j∈[m/2]

(1−2yj) usi(2j−1) + (2yj −1) usi(2j) ≥ d i = 1, 2

0 ≤ yj ≤ 1 j = 1, . . . , m/2.

Because this formulation has one more variable, one more constraint is binding at a BFS, which ensures
that there are at most two fractional yj . Let (y∗, d∗) be an optimal BFS for the LP, which can be found
efficiently (Proposition 2.1). Since setting all yj = 1/2 and d = 0 is feasible, we know that d∗ is nonnegative
and that y∗ describes a fractional allocation that is EF for the three agents.

We are now ready to prove EF1 existence, by rounding the fractional solution y∗ into an EF1 allocation,
in which each group receives exactly one good among {2j − 1, 2j} for each 1 ≤ j ≤ m/2. Since the rounding
argument is fairly complex, we outline the main ideas here and defer the proof to Appendix A.

Theorem 3.1. In the case of two groups with two agents each, a balanced EF1 allocation always exists and
can be found in (weakly) polynomial time.

Proof sketch. Since y∗ has at most two fractional values, we can fix 1 ≤ α, β ≤ m/2 such that all variables
except for y∗

α, y∗
β are integral. Let If and Is be the set of remaining goods that are allocated entirely to

the first and second group, respectively. We can assume w.l.o.g. that y∗
α, y∗

β ≥ 1/2.4 For convenience, set
αf := 2α− 1 to be the good of which group f receives a y∗

α fraction and group s receives a 1− y∗
α fraction;

αs := 2α to be the good of which s receives a y∗
α fraction and f receives a 1− y∗

α fraction; and analogously
for βf , βs. This allocation is illustrated in Fig. 1.

Case y∗
α + y∗

β ≥ 3/2. If y∗
α + y∗

β ≥ 3/2, the fractional allocation is already very close to being integral. In
this case, allocating {αf , βf} to f and {αs, βs} to s turns out to be EF1. Since this allocation gives each
good to the group that had the larger fraction of it in y∗, we refer to this as the natural rounding. To see
that the natural rounding is EF1, observe that the natural rounding is reached by starting from y∗, and
transferring goods as follows:

group f group s

(1−y∗
α) × αs, (1−y∗

β) × βs

(1−y∗
α) × αf , (1−y∗

β) × βf

4Otherwise, one can swap the roles of, say, goods 2α − 1 and 2α, which keeps (f, 1) EF1.
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Taking the perspective of, say, (f, 1), they start from the envy-free allocation y∗ and receive some fraction of
αf and βf , which only reduces their envy. Then, f hands some fraction of αs, βs to s, but the the amount of
this transfer is 1− y∗

α + 1− y∗
β ≤ 1/2 goods. This transfer increase (f, 1)’s envy twofold because f ’s allocation

shrinks and that of s grows. But (f, 1)’s envy is now at most max(uf1(αs), uf1(βs)), which can be eliminated
by removing the higher-valued good from s’s bundle.

Case y∗
α + y∗

β < 3/2. In the remaining case, in which 3/2 > y∗
α + y∗

β ≥ 1, the fractional allocation is further
from the natural rounding. As a consequence, we have to reason about which of the four rounding options
(in which f receives {αf , βf}, {αf , βs}, {αs, βf}, or {αs, βs}, respectively) are EF1 for each agent to find
a rounding option that works for everyone. We call agent (g, i) unhappy with αg if they prefer αg′ over it
(where g′ is the other group) and unhappy with βg if they prefer βg′ . The following two observations follow
from arguments similar to the one of the previous case:
(A) If an agent (g, i) is unhappy with both αg and βg, they are EF1 for all rounding options except the

natural one.

(B) If an agent is happy with at least one of αg or βg, they are EF1 for the natural rounding and at least
one other rounding option.

Since any two agents have at least one EF1 option in common, we successfully find an EF1 allocation whenever
at least one of the three agents is EF1 for all four rounding options.

If, finally, all three agents have some rounding option that is not EF1, none of the four rounding options
discussed so far may work, but we have one more ace up our sleeve:
(C) If an agent is not EF1 under some rounding option, then they become EF1 under the other three options

if we swap the integral parts If and Is.
Since this observation applies to all three agents, each of them rules out at most one of the four rounding
options after swapping the integral parts, which leaves one that is EF1 for all of them.5 Since this allocation
is also still EF1 for the set-aside agent (f, 1), this establishes the claim.

As the counting arguments do not refer to which group each agent is in, the same argument also shows the
existence of EF1 allocations for two groups of sizes (|f |, |s|) = (3, 1), left open by Kyropoulou et al. [KSV20],
for the natural adaptation of the LP. We conclude:
Corollary 3.2. When there are two groups with a total of four agents, a balanced EF1 allocation exists and
can be computed in (weakly) polynomial time.

3.2 EF1 Impossibility for Three or More Couples
Since we were able to guarantee EF1 existence for two couples, one may hope that this existence extends to
any number of couples, an audacious hope that has not been contradicted by earlier papers. In the special
case where the agents (g, 1) across all groups g have identical valuations, Bu et al. [BLL+24] show that EF1
allocations do exist, using a variant of envy-cycle elimination due to Barman and Biswas [BB20].

In general, however, we find that EF1 allocation need no longer exist for three or more couples:
Theorem 3.3. For n ≥ 3 couples, some fair division instances have no EF1 allocations.
Proof. We prove the claim here for n = 3 and generalize to n > 3 in Appendix B. Consider the following
instance with 3 couples called f, s, t and goods {1, 2, 3, 4, 5}:

valuation 1 2 3 4 5
uf1 2 2 0 0 1
uf2 0 0 2 2 1
us1 0 2 0 2 1
us2 2 0 2 0 1
ut1 2 0 0 2 1
ut2 0 2 2 0 1

5For the straight-forward EF polytope, swapping integral allocation parts does not overcome the rounding counterexample.
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Each agent has positive valuation for three goods: two with value 2 and one with value 1. The agent
must receive at least one such good since, otherwise, some other group receives two or more of those goods,
violating EF1.

For the sake of contradiction, suppose that an EF1 allocation exists. Since there are five goods and three
groups, one group must receive a single good. Let this be the case for group f , w.l.o.g. by symmetry. Since
this good must have positive value for both agents in the group, it must be good 5.

Because the remaining four goods are never liked by both agents in a group, the other two groups must
receive two goods each. Consider the two goods given to group s. By construction, there must be some agent
(g, i) (not necessarily in group s) for whom both of these goods have value 2, and for whose partner (g, i′)
both goods have value 0. If g = s, then (g, i′) receives value 0 and must be envious. Otherwise, (g, i) envies
group s by more than one good.

4 Proportionality
Because an EF1 allocation among couples may not exist, it is natural to ask whether the weaker axiom
of PROP1 can be guaranteed instead. For n couples, Bu et al. [BLL+24] establish the existence of a
PROP-O(log n) allocation by iteratively bi-partitioning the agents and applying, in each step, a rounding
argument for a fair allocation among two groups.6 In this section, we get much closer to the standard axiom
of PROP1; for n couples, we achieve PROP1 for the first agent in each group and PROP2 for each second
agent.

4.1 Almost PROP Allocations for Small Groups
In fact, the claim for couples follows from a general result for groups of arbitrary sizes, which shows the
existence of an fPO allocation in which every agent (g, i) is PROPi.

We prove this existence using an algorithm based on the iterative rounding method [Jai01]. This method
has been widely used in combinatorial optimization, including fair allocation [CCK09; CMV25; NPV16]. Our
rounding is inspired by the algorithm of Shmoys and Tardos [ST93] for the Generalized Assignment Problem.

Our algorithm maintains a sequence of fractional allocations, and iteratively freezes coordinates at 0 and
1 until it reaches a discrete allocation.

The steps of the algorithm are most easily explained by considering a bipartite graph, whose nodes
on one side are the goods M ′ ⊆ M not yet discretely allocated and on the other side are a set of n
groups G′, obtained from G by removing some agents. The set of edges E ⊆ M ′ × G′ denotes the allowed
assignments by specifying, for each good, the groups that the good may still be allocated to. Initially, we
have M ′ := M,G′ := G, E := M × G, meaning that no goods have been allocated, no agents eliminated, and
all possible assignments are allowed. Based on M ′,G′, E, and the bundles Bg of goods already discretely
allocated to group g, we consider the following polytope, which describes the currently allowed fractional
allocations that are PROP for all agents remaining in G′:∑

α:(α,g)∈E

xαg ugi(α) ≥
ugi(M)

n
− ugi(Bg) ∀g ∈ G′, i ∈ [|g|]

∑
g:(α,g)∈E

xαg = 1 ∀α ∈ M ′

0 ≤ xαg ≤ 1 ∀(α, g) ∈ E.

We refer to the three types of constraints, in order from top to bottom, as agent constraints, good
constraints, and edge constraints. Our algorithm is based on the following lemma, which will guide the
rounding procedure.

Lemma 4.1. If M ′ ̸= ∅, every BFS x∗ of the polytope above satisfies at least one of the following two
conditions:

(i) x∗
αg ∈ {0, 1} for some (α, g) ∈ E, or

6This argument is much easier than our argument for EF1. Though EF and PROP are equivalent for two groups, PROP1 is
weaker and easier to achieve through rounding than EF1.
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(ii)
∑

α:(α,g)∈E x∗
αg ≤ |g| for some nonempty group g ∈ G′.

Proof. Fix a BFS x∗, and assume that Condition (i) does not hold. Since |E| constraints must be tight, i.e., hold
with equality, at a BFS, the number of agent and good constraints must be at least |E|:

∑
g∈G′ |g|+ |M ′| ≥ |E|.

Furthermore, since all x∗
αg are fractional and each good α ∈ M ′ has a total incident weight of 1 by

the good constraints, α must be incident to at least two edges. Hence,
∑

g∈G′ |g| + |M ′| ≥ |E| ≥ 2|M ′|,
i.e.,

∑
g∈G′ |g| ≥ |M ′|. By summing over all good constraints, we obtain that

∑
(α,g)∈E x∗

αg = |M ′|, hence∑
g∈G′ |g| ≥

∑
(α,g)∈E x∗

αg.
Suppose, for contradiction, that Condition (ii) were also violated. In this case, each group g ∈ G′ would

satisfy
∑

α:(α,g)∈E x∗
αg ≥ |g| and this inequality would be strict for the nonempty groups.7 Summing up over

all groups, we obtain
∑

(α,g)∈E x∗
αg >

∑
g∈G′ |g|, a contradiction.

In each iteration, our algorithm finds a BFS x∗ for the polytope above, and then proceeds as below. In
the first iteration, we specifically select a BFS representing an fPO allocation, say, by solving an LP that
maximizes the sum of all agents’ utilities over the polytope. Then:

1. We delete all edges (α, g) from E for which x∗
αg = 0.

2. If x∗
αg = 1 for some (α, g) ∈ E, we discretely allocate α to g, remove α from M ′ and (α, g) from E.

3. We update G′ by removing the last agent of every group g for which Condition (ii) from Lemma 4.1
holds.

Since x∗ (restricted to the remaining edges) remains feasible for the updated polytope, the polytope remains
nonempty, so we can find a new BFS x∗ and repeat the process from Step 1 until all goods are allocated. Since,
by Lemma 4.1, each iteration removes either an agent or an edge, the algorithm terminates in polynomially
many iterations.

We now state the main theorem and sketch its proof. We defer pseudocode for the algorithm and the
formal proof to Appendix C.
Theorem 4.2. In any group fair division instance with arbitrary group sizes, there exists an fPO allocation
which is PROPi for every agent (g, i) where g ∈ G and i ≤ |g|. This allocation can be computed in (weakly)
polynomial time.

Proof sketch. We have already argued that the algorithm makes progress and terminates in polynomially
many iterations. Since each iteration involves solving a linear program and some polynomial computation, the
total running time is polynomial. It remains to argue that the resulting allocation satisfies PROPi and fPO.

Proportionality. Fix an agent (g, i). If the agent gets never eliminated, their agent constraint ensures
that the allocation even satisfies PROP. Should the agent get eliminated in some iteration, it must hold that∑

(α,g)∈E x∗
αg ≤ i for the BFS x∗ of this iteration. Since x∗ satisfies the agent’s constraint, the bundle Bg

already discretely allocated to g before this iteration satisfies ugi(Bg) +
∑

α:(α,g)∈E x∗
αg ugi(α) ≥ ugi(M)/n.

Since
∑

α:(α,g)∈E x∗
αg ugi(α) is at most the value of the i most valuable goods outside of Bg, the agent is

PROPi — even if the final allocation does not give their group any goods in addition to Bg.

Fractional Pareto Optimality. It is a classic result by Varian [Var74] that a fractional allocation is fPO
iff it maximizes a positively weighted sum of agent utilities. (We confirm that this equivalence persists in
the group setting.) Observe that a fractional allocation maximizes the weighted sum of agent utilities with
weights wgi > 0 iff each good α is only allocated among groups g ∈ argmaxg∈G

∑
i∈[|g|] wgi ugi(α). It follows

that, if the fractional allocation x is fPO and if, for another fractional allocation x′, xgα = 0 implies x′
gα = 0

for all groups g and goods α, then x′ is also fPO. This argument was previously used, for example, by Aziz
et al. [AMS20] and Bai et al. [BFGP22].

Since the first iteration of the algorithm starts with an fPO x∗, and since the algorithm immediately
removes all edges that were zero for x∗, the final allocation only allocates goods to groups that received a
non-zero amount of this good in the initial fractional allocation. Hence, the allocation found by the algorithm
is fPO.

7Some group is nonempty because
∑

g∈G′ |g| ≥ |M ′| > 0.
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4.2 Possibility of PROP1 Allocations
Although we can only prove the existence of a PROP2 allocation among couples, we conjecture that PROP1
allocations exist for any number of couples.

Our conjecture is supported, in part, by a failure to find counter-examples by hand and with computer
aid. More importantly, we were able to show the existence of PROP1 allocations for several special cases:

Theorem 4.3. When each group g ∈ G has size 2, a PROP1 allocation is guaranteed and efficiently
computable whenever one of the following conditions holds.

• m ≤ 2n.

• m divides n and (g, 1) and (g, 2) have opposite preference rankings over the goods for all g ∈ G.

• All agents have binary valuations and approve the same number of goods.

• All agents have binary valuations and n = 3.

Since PROP1 is weaker than EF1, one might hope for the existence of PROP1 for even larger groups.
However, PROP1 may fail to exist for groups of size three:

Theorem 4.4. For n ≥ 5 groups of three agents, PROP1 allocations need not exist, even when utilities are
binary and the groups are all identical. Moreover, deciding whether a PROP1 (or EF1) allocation exists is
NP-complete for groups of three agents, even for binary utilities.

Proof sketch. We only give the counter-example for five groups of three agents here, and defer the rest to
Appendix E. Consider an instance with goods {1, . . . , 9} and five groups g, each of which has the following
valuations:

valuation 1 2 3 4 5 6 7 8 9
ug1 1 1 1 1 1 1 0 0 0
ug2 1 1 1 0 0 0 1 1 1
ug3 0 0 0 1 1 1 1 1 1

Each agent has a total valuation of 6 and her proportional share is 6
5 > 1. Hence, each agent must receive

at least one good with value 1 to be PROP1. As there are 9 goods and 5 groups, one group receives only
one good. By construction, this good has zero value for one of the agents in the group, implying a PROP1
allocation cannot be achieved.

5 Experiments
We now use real-world preference data to empirically examine how often fair allocations exist for practical
allocation problems among couples and if our iterative-rounding algorithm exceeds its theoretical guarantees
in practice. Our dataset consists of all allocation problems for indivisible goods (over individuals) submitted
to the website Spliddit [GP14; Sha17] as of June 2025. To allow us to meaningfully group agents, we consider
only Spliddit instances with at least four agents. The remaining data consists of 254 instances, whose number
of agents ranges between 4 and 15 (median: 5) and whose number of goods ranges between 1 and 59 (median:
6). See Appendix F for more details on our data and experiments.

We transform each Spliddit instance into fair allocation problems over couples by iterating over all
partitions of agents into pairs (if the number of agents is odd, one agent remains on their own), considering
1000 random pairings if the number of pairings exceeds this number. Since the different pairings of the same
Spliddit instance produce correlated observations, we do not treat them as independent datapoints. Instead,
we calculate for each Spliddit instance the fraction of its pairings that satisfies some property (say, EF1),
and report averages over these fractions of pairings. In Fig. 2, we display the average fractions of pairs for
the existence of several fairness axioms, and for whether these axioms are achieved by two variants of our
iterative rounding algorithm. In Appendix F, we show that the patterns remain similar when restricting to
instances with many or few agents, or with many or few goods.

9



Figure 2: Fraction of pairings for which fair allocations exist or are found by one of two algorithms, averaged
over all Spliddit instances. Axioms imply axioms to their left. Error bars indicate 95% confidence intervals
(bootstrapping).

While our Theorem 3.3 shows that EF1 allocations do not exist for all fair allocation instances among
couples, such allocations seem to exist for most practical problems. Strikingly, we find EF1 allocations (hence
also PROP1 allocations) for each of the over 13,000 instance–pairing combinations we study. We also tested
the frequency of allocations satisfying EF and EFX,8 an axiom between EF and EF1, whose existence is a
tantalizing open question [CGM20; CKM+19] in the individual setting. As shown by the blue bars in Fig. 2,
EFX exists for 96% of pairings on average, whereas EF is rarer at 44%.

In Section 4, we proposed a natural iterative-rounding algorithm with proportionality and efficiency
guarantees. To test this algorithm’s usefulness in practice, we apply it to the same datasets, and report
the fraction of pairings for which the algorithm satisfies each fairness axiom. The orange bars in Fig. 2
(“remove all the agents”) represent a direct implementation of our algorithm. Though the algorithm only
guarantees PROP2 for the second agents in the worst case, it satisfies PROP1 almost always on our data
(99% of pairings on average). The algorithm even finds EF1 (73% of pairings) and EFX (53%) reasonably
often, though substantially less often than the existence of these axioms, which is to be expected since the
algorithm does not avoid envy.

We also repeated the experiment with a variant of the iterative-rounding algorithm, in which we do not
immediately eliminate the last agent from all groups satisfying condition (ii) of Lemma 4.1. Instead, we
find the group with the lowest incident weight among eligible groups, and eliminate only a single agent,
namely the remaining agent in this group with the largest utility from already discretely allocated goods.
Heuristically, this might lead to fairer allocations by deferring when we drop the constraints of agents who
have not yet reached proportionality.

The performance of this variant is shown in Fig. 2 by the green bar (“remove the best agent”). Eliminating
only one agent per iteration leads to PROP1 allocations on all our considered instances and pairings. For
EF1, the variant increases the average fraction of pairings from 73% to 86%, an increase clearly beyond
the confidence intervals of both estimates (see figure). The change also moderately increases the fraction
of EFX pairings from 53% to 60%, and has no discernible effect on EF. In light of these improvements,
it would be interesting to study in future work if starting from fPO allocations other than the one with
maximum utilitarian welfare and using other heuristics for eliminating agents can lead to even better practical
performance.

8An allocation {Bg′ }g′∈G is EFX for (g, i) if removing any good α ∈ Bg′ with ugi(α) > 0, from Bg′ , eliminates the envy of
the agent.
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6 Conclusion
We studied the allocation of indivisible goods among small groups, a well-motivated setting that most prior
works, due to their focus on asymptotic bounds in the group size, have left largely unexplored. For two
couples and envy freeness, or for any number of small groups and proportionality, we showed that fairness
axioms must not be relaxed by much more than in the individual setting to guarantee existence.

Though our hope of EF1 existence for arbitrary numbers of couples did not materialize, our work leaves
open many possibilities for positive results. For example, we do not know if EF1 allocations exist for all
allocation problems over couples with binary valuations, whether PROP1 allocations exist for any number of
couples with additive utilities (as we believe), or whether, say, it is possible to guarantee EF1 for one partner
and PROP1 for the other in each couple.
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Appendix

A Proof of Theorem 3.1: Existence of EF1 for Two Couples
The following lemma is a simplified version of Lemma 4.1 in Kyropoulou et al. [KSV20].

Lemma A.1. Every allocation that contains exactly one good from each pair {2j − 1, 2j} for all j ∈ [m/2] is
EF1 for agent (f, 1).

Proof. Let α1, α2, . . . , αm/2 and β1, β2, . . . , βm/2 be the goods f and s receives respectively, where {αj , βj} =
{2j − 1, 2j}. As uf1(αj) ≥ uf1(βj+1), we have

∑m/2
j=1 uf1(αj) ≥

∑m/2−1
j=1 uf1(βj+1). Therefore, once β1, the

most valuable good of s, is taken from them, agent (f, 1) is no longer envious.
For convenience, we repeat our LP formulation here:

max d

s.t.
∑

j∈[m/2]

(2yj −1) uf2(2j−1) + (1−2yj) uf2(2j) ≥ d

∑
j∈[m/2]

(1−2yj) usi(2j−1) + (2yj −1) usi(2j) ≥ d i = 1, 2

0 ≤ yj ≤ 1 j = 1, . . . , m/2. (LPd)

Theorem 3.1. In the case of two groups with two agents each, a balanced EF1 allocation always exists and
can be found in (weakly) polynomial time.

Proof. Let (y∗, d∗) be an optimal BFS for the LP, which can be found efficiently (Proposition 2.1). Since
setting all yj = 1/2 and d = 0 is feasible, we know that d∗ is nonnegative and that y∗ describes a fractional
allocation that is EF for the three agents. We will round an optimal BFS of LPd to an EF1 allocation in
which each group receives exactly one good from {2j − 1, 2j} for every j ∈ [m/2]. The resulting allocation is
balanced and, by Lemma A.1, ensures EF1 for agent (f, 1). Therefore, we focus on proving EF1 for the other
three agents.

Since y∗ has at most two fractional values, we can fix 1 ≤ α, β ≤ m/2 such that all variables except for
y∗

α, y∗
β are integral. Let If and Is be the set of remaining goods that are allocated entirely to the first and

second group, respectively. We can assume w.l.o.g. that y∗
α, y∗

β ≥ 1/2.9 For convenience, set αf := 2α− 1 to
be the good of which group f receives a y∗

α fraction and group s receives a 1− y∗
α fraction; αs := 2α to be

the good of which s receives a y∗
α fraction and f receives a 1− y∗

α fraction; and analogously for βf , βs. This
allocation is illustrated in Fig. 3a.

We now slightly modify the allocation y∗ to define a partial fractional allocation z∗, which will make the
next steps of the proof more intuitive. Picture each group f and s transferring the overlapping parts of each
good to a bank. These overlapping portions include a (1− y∗

α) fraction of αf and αs, and a (1− y∗
β) fraction

of βf and βs. Consequently, each group g is left with z∗
α := y∗

α − (1− y∗
α) of αg and z∗

β := y∗
β − (1− y∗

β) of
βg. Since both groups surrender the same amount of each good, the envy of the agents is unaffected. We
will then show how z∗ can be rounded to an EF1 allocation. During the rounding process, if a good from
{αf , αs, βf , βs} is assigned to group g, then g still receives the entire good — part from the groups, and
part from the bank. Note that this modification of the initial fractional allocation does not affect the logic of
the proof and is just a matter of presentation. z∗ is illustrated in Fig. 3b.

We use g to denote the group under consideration, and g′ for the other group. When we say a bundle B is
EF (or EF1) for (g, i), we mean the allocation {B, M \B} is EF (or EF1) for that agent. We are now ready
to describe the rounding procedure. As we intended to give each groups exactly one good from each pair
of goods, we have four rounding options, where f receives {αf , βf}, {αf , βs}, {αs, βf}, and {αs, βs}, and s
receives the compliment. Among these, we refer to the one that assigns {αg, βg} to group g natural rounding.
We have two main cases:

9Otherwise, one can swap the roles of, say, goods 2α − 1 and 2α, which keeps (f, 1) EF1 by Lemma A.1.
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(a) Illustration of y∗. Each good is paired
with the good next to it. The bright, solid
portion of a box represents the fraction of
the good a group receives, while the faded
portion represents the fraction allocated to
the other group.
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(b) Illustration of z∗, where the bright, solid region shows the part
of the good held by the group or the bank.

Figure 3

Case 1: z∗
α + z∗

β ≥ 1. In this case, each group g receives at least one combined unit of good from {αg, βg}.
As a result, applying the natural rounding adds at most one unit of combined goods to each group’s bundle,
which increases the envy of other agents by no more than one unit. For the agent (g, i) we have:

ugi(Ig) + ugi(αg) + ugi(βg) ≥ ugi(Ig) + z∗
α ugi(αg) + z∗

β ugi(βg) (as z∗
α, z∗

β ∈ [0, 1])

≥ ugi(Ig′ ) + z∗
α ugi(αg′ ) + z∗

β ugi(βg′ ) (by envy-freeness of z∗)

≥ ugi(Ig′ ) + (z∗
α + z∗

β) min(ugi(αg′ ), ugi(βg′ ))

≥ ugi(Ig′ ) + min(ugi(αg′ ), ugi(βg′ )) (as z∗
α + z∗

β ≥ 1)

Case 2: z∗
α + z∗

β < 1. We call agent (g, i) unhappy with αg if they prefer αg′ over it (where g′ is the other
group) and unhappy with βg if they prefer βg′ . We have the following observations regarding our three agents:

(A) If an agent (g, i) is unhappy with both αg and βg, they are EF1 for all rounding options except the
natural one.

Proof. As the agents is unhappy with both αg and βg, we have ugi(αg) ≤ ugi(αg′), and ugi(βg) ≤ ugi(βg′).
Also, by envy-freeness of (g, i) we have

ugi(Ig) + z∗
α ugi(αg) + z∗

β ugi(βg) ≥ ugi(Ig′ ) + z∗
α ugi(αg′ ) + z∗

β ugi(βg′ ) (1)

which implies ugi(Ig) ≥ ugi(Ig′). Hence, (g, i) is EF1 as long as she receives one of her preferred goods
αg′ or βg′ .

(B) If an agent is happy with at least one of αg or βg, they are EF1 for the natural rounding and at least
one other rounding option.

Proof. Note that as (g, i) is happy with at least one of αg and βg, we have
max(ugi(αg) − ugi(αg′ ), ugi(βg) − ugi(βg′ )) ≥ 0 (2)

Hence, by rearranging the terms of Eq. (1) we get
ugi(Ig′ ) − ugi(Ig) ≤ z∗

α (ugi(αg) − ugi(αg′ )) + z∗
β (ugi(βg) − ugi(βg′ ))

≤ (z∗
α + z∗

β) max(ugi(αg) − ugi(αg′ ), ugi(βg) − ugi(βg′ ))

≤ max(ugi(αg) − ugi(αg′ ), ugi(βg) − ugi(βg′ )) (as z∗
α + z∗

β < 1 and by Eq. (2))

= ugi(αg) − ugi(αg′ ) (w.l.o.g.)

Again, by rearranging the terms, we get ugi(Ig) + ugi(αg) ≥ ugi(Ig′) + ugi(αg′) which shows both
Ig ∪ {αg, βg}, the allocation given by the trivial rounding, and Ig ∪ {αg, βg′} are EF1 for (g, i).
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(C) If an agent is not EF1 under some rounding option, then they become EF1 under the other three options
if we swap the integral parts If and Is.

Proof. Assume Ig ∪ {α, β} is not EF1 for (g, i) where α ∈ {αf , αs} and β ∈ {βf , βs}. And let α′ ∈
{αf , αs} \ {α} and β′ ∈ {βf , βs} \ {β} be the other two goods. As (g, i) is not EF1, we have:

ugi(Ig) + ugi(α) + ugi(β) < ugi(Ig′ ) + ugi(α′)
ugi(Ig) + ugi(α) + ugi(β) < ugi(Ig′ ) + ugi(β′)

This implies if (g, i) receives Ig′ and at least one of the α′ or β′, she will be EF1.

Given these observations, the analysis splits into two subcases:

• One of the three agents is EF1 under all four rounding options. As a result of observations
(A) and (B), any two agents have at least one EF1 rounding option in common: either natural rounding
is EF1 for both, or an overlap is assured because one agent is EF1 under three rounding options, and
the other one is EF1 under at least two rounding options.
The existence of an EF1 allocation is guaranteed as one of the agents is EF1 under all four rounding
options, and the other two agents have an EF1 rounding option in common.

• None of the agents is EF1 under all four rounding options. Then by observation (C), swapping
If and Is ensures that each agent becomes EF1 under at least three of the four options—eliminating
only one. Hence, there exists at least one rounding option that is EF1 for all three agents.

Note that, in all rounding schemes above, one good from each pair {2j − 1, 2j} is allocated to each group, as
intended.

The algorithm runs in polynomial time by first computing an optimal BFS of LPd, which can be done in
polynomial time by Proposition 2.1, and then applying a linear-time rounding procedure.

B Proof of Theorem 3.3: Non-Existence of EF1 for Three or More
Couples

Theorem 3.3. For n ≥ 3 couples, some fair division instances have no EF1 allocations.

Proof. Consider an instance with four special goods {1, 2, 3, 4} and n− 2 goods with value 1 for every agent.
For each group g, the utilities ug1(·) and ug2(·) restricted to the special goods follow one of the valuation
pairs listed in the table below. Also, each of the below pairs occurs for at least one group.

valuation 1 2 3 4

ug1 2 2 0 0
ug2 0 0 2 2

ug1 0 2 0 2
ug2 2 0 2 0

ug1 2 0 0 2
ug2 0 2 2 0

Each agent has positive valuation for n goods: two with value 2 and n − 2 with value 1. The agent
must receive at least one such good since, otherwise, some other group receives two or more of those goods,
violating EF1.

For the sake of contradiction, suppose that an EF1 allocation exists. With n + 2 goods and n groups, and
since each group must get at least one good, at most two groups can receive more than one good. Therefore,
n− 2 groups receive only one good, and since this good must have positive value for both agents in the group,
it can not be among the special goods {1, 2, 3, 4}. W.l.o.g. let the first n− 2 groups each get one non-special
good. Since no special good is liked by both agents in a group, the remaining two groups, n− 1 and n, must
receive two of the special goods each. Now, consider the two goods given to the group n. By construction,
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there must be some agent (g, i) for whom each of these two goods has value 2. Observe that these two goods
must then have utility 0 for (g, i)’s partner (g, i′). If g is the group n, then (g, i′) receives value 0 and must
be envious. Otherwise, if g is another group, (g, i) envies the group n by more than one good.

C Details of Section 4.1 and the Iterative Rounding Algorithm
C.1 On Fractional Pareto optimality
For a set S ⊆ Rn, we say x ∈ S is Pareto optimal if there exists no y ∈ S such that y ̸= x and y ≥ x. For
completeness, we begin by providing a proof of the following proposition.
Proposition C.1. Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron. Then p ∈ P is Pareto optimal iff there
exists w > 0 such that p maximizes wT x over P , i.e., max{wT x : x ∈ P} = wT p.
Proof. ⇐=: If w > 0 and wT p = max{wT x : x ∈ P}, then p is Pareto optimal; otherwise, a dominating p′

would satisfy wT p′ > wT p.
=⇒: The normal cone of P at point p is defined as NP (p) = {w ∈ Rn : wT p ≥ wT x ∀x ∈ P}. It consists

of all w ∈ Rn for which p is a maximizer of wT x over P . Let A=p = b= be the tight constraints of Ax ≤ b at
point p. It is known that NP (p) = cone{a=

1 , a=
2 , . . . , a=

k } where a=
i is the i-th row of A=. Also, as p is Pareto

optimal, at least one of the constraints Ap ≤ b must be tight10 implying NP (p) ̸= ∅.
We want to show NP (p) contains a w > 0. For the sake of contradiction, assume NP (p) ∩ Rn

>0 = ∅.
As both NP (p) and Rn

>0 are convex and non-empty, by the seperating hyperplane theorem, there exists
b ∈ R and c ∈ Rn \ {0} such that cT x ≤ b ≤ cT y for every x ∈ NP (p) and y ∈ Rn

>0. As ϵ1 ∈ Rn
>0 for every

ϵ > 0, we have b ≤ limϵ→0 cT ϵ1 = 0. Similarly, for an x ∈ NP (p) and ϵ > 0 we have ϵx ∈ NP (p) implying
b ≥ limϵ→0 cT ϵx = 0 giving b = 0. As cT y ≥ 0 for every y ∈ Rn

>0, then c ≥ 0. As cT x ≤ 0 for every x ∈ NP (p)
and in particular for a=

i , we have that A=c ≤ 0 which implies there exists a small enough ϵ > 0 such that
A(p + ϵa) ≤ b. Therefore, p + ϵc ∈ P , and as c ≥ 0 and c ̸= 0, this contradicts the Pareto optimality of p.

We next prove the following result by Varian [Var74] for our group setting.
Lemma C.1. Considering a fair division instance (G, M,U), a fractional allocation x is fPO iff there exists
a weight vector (wgi)g∈G,i∈[|g|] > 0 such that

xαg > 0 =⇒ g ∈ arg max
g′∈G

∑
i∈[|g′|]

wg′i(α) ug′i(α)

Proof. Let P denote the set of all fractional allocations for the instance (G, M,U), and let U(·) be the linear
transformation that maps each fractional allocation x′ to its utility profile, i.e., U(x′) =

(∑
α∈M x′

αg ugi(α)
)

g∈G,i∈[|g|]
Let Q = {U(x′) : x′ ∈ P} be the image of P under U(·). Observe that P is a polytope, and since Q is a

linear image of P , it is also a polytope. A point x ∈ P is an fPO allocation iff U(x) is a Pareto optimal point
of Q, which, by Proposition C.1, is equivalent to the existence of a weight vector (wgi)g∈G,i∈[|g|] > 0 such
that U(x) maximizes wT U(x′) over all fractional allocations x′. Also,

wT U(x) =
∑
α∈M

∑
g∈G

xαg

 ∑
i∈[|g|]

wgi(α) ugi(α)

 ,

is in fact a “weighted utilitarian welfare” of the fractional allocation x. Hence, wT U(x′) is maximized at
U(x), iff x allocates each good α among the groups that maximize

∑
i∈[|g|] wgi(α) ugi(α). That is

xαg > 0 =⇒ g ∈ arg max
g′∈G

∑
i∈[|g′|]

wg′i(α) ug′i(α)

Corollary C.2. If a fractional allocation x is fPO for an instance (G, M,U) and x′ is another fractional
allocation such that xαg = 0 implies x′

αg = 0, then x′ is also fPO.
Proof. By the contrapositive of the assumption, we have x′

αg > 0 =⇒ xαg > 0. We can then apply Lemma C.1
to x′ using the same weight vector as x.

10Otherwise, p + ϵ1 will be feasible for small enough ϵ.
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Algorithm 1 Finding an Almost PROP Allocation
Input: A group fair division instance consisting of G, M , and a set of valuation functions {ugi}g∈G,i∈|g|
Output: An fPO and almost PROP allocation

1: Let M ′ = M , G′ = G, E = M × G.
2: Let Bg = ∅ for every g ∈ G be the current bundle of g.
3: Let x∗ be a BFS of P corresponding to an fPO fractional allocation.
4: while True do
5: for (α, g) ∈ E do
6: if x∗

αg = 0 then
7: E = E \ {(α, g)}
8: else if x∗

αg = 1 then
9: Bg = Bg ∪ {α}

10: M ′ = M ′ \ {α}
11: E = E \ {(α, g)}
12: Update G′ by removing the last agent of every group g with |g| > 0 such that

∑
α:(α,g)∈E x∗

αg ≤ |g|.
13: if M ′ = ∅ then
14: break
15: Let x∗ be a BFS of P.
16: return {Bg}g∈G

C.2 Proof of Theorem 4.2
We repeat the polytope formulation, along with a pseudocode of the algorithm for convenience.∑

α:(α,g)∈E

xαg ugi(α) ≥
ugi(M)

n
− ugi(Bg) ∀g ∈ G′, i ∈ [|g|]

∑
g:(α,g)∈E

xαg = 1 ∀α ∈ M ′

0 ≤ xαg ≤ 1 ∀(α, g) ∈ E. (P)

Theorem 4.2. In any group fair division instance with arbitrary group sizes, there exists an fPO allocation
which is PROPi for every agent (g, i) where g ∈ G and i ≤ |g|. This allocation can be computed in (weakly)
polynomial time.

We prove the theorem by showing that Algorithm 1 is well-defined and its output satisfies our desired
properties. To be more rigorous, we use Pt, x∗t, Et, M ′

t , G′
t, and Bt

g to denote the polytope, the computed
BFS, the set of edges, remaining goods, state of the groups, and the bundle already allocated to g at the
start of iteration t.

Well-Definedness and Running Time We first show that we can find a BFS of P1 corresponding to an
fPO allocation. Because of the constraint 0 ≤ xαg ≤ 1, P1 is a polytope and is non-empty, as setting xαg = 1

n
for all (α, g) ∈M × G is feasible for it. Hence, by Proposition 2.1 we can compute a BFS x∗1 maximizing
the total utilitarian welfare,

∑
g∈G

∑
i∈[|g|]

∑
α∈M xαg ugi(α). This BFS corresponds to an fPO fractional

allocation, as if there existed another fractional allocation x′ that Pareto dominates x∗1, then x′ would also
be feasible for P1 and yield a higher total utility, contradicting optimality of x∗1.

Next, we prove that as long as there are unallocated goods, i.e., M ′ ≠ ∅, we can find a BFS x∗. Again, by
Proposition 2.1, it suffices to show our polytope P remains non-empty throughout the algorithm, which we
prove by induction. We already showed that P1 is non-empty. Suppose Pt is non-empty for some iteration t.
We claim x∗t

Et+1
, i.e., x∗t restricted to the edges of Et+1, is feasible for Pt+1. Obviously 0 ≤ x∗t

Et+1
≤ 1. Since

we only eliminate edges with x∗t
αg ∈ {0, 1}, and we remove α from the set of goods whenever x∗t

αg = 1, the
total weight of x∗t

Et+1
incident to each good in M ′

t+1 is 1. As we allocate α to g only when x∗t
αg = 1, the agent

constraints continue to hold. Rigorously, for every (g, i) we have:
ugi(M)

n
− ugi(Bt

g) ≤
∑

α:(α,g)∈Et

x∗t
αg ugi(α) (by feasibility of x∗t for Pt)

17



=
∑

α:(α,g)∈Et+1

x∗t
αg ugi(α) + ugi(Bt+1

g \ Bt
g)

(as Et+1 = Et \ {(α, g) : x∗t
αg ∈ {0, 1}} and Bt+1

g = Bt
g ∪ {α : x∗t

αg = 1})

Hence, x∗t
Et+1

is feasible for Pt+1, implying the polytope at the beginning of iteration t + 1 is non-empty.
By Lemma 4.1, each iteration eliminates either an edge or an agent, implying that the total number of

iterations is bounded by |M × G|+
∑

g∈G |g|. As in every iteration, we compute a BFS of P11 and perform a
polynomial-time rounding step, the overall runtime of the algorithm is polynomial.

Proportionality Consider an agent (g, i) we eliminate at some iteration t. Let B ∈M ′
t be the set of i most

valuable remaining goods for (g, i), and if |M ′
t | < i let B = M ′

t . As (g, i) is removed at t the total weight of
x∗t incident to g is at most i. So,

ugi (B) ≥
∑

α:(α,g)∈Et

x∗t
αg ugi(α) ≥

ugi(M)
n

− ugi(Bt
g)

Hence, adding B to g’s bundle makes (g, i) proportional. As B ∩ Bt
g = ∅ and |B| ≤ i, (g, i) is PROPi

at iteration t. Since g only receives more goods in later iterations, (g, i) continues to satisfy PROPi. Now
consider an agent (g, i) we never eliminate. In the last iteration T , as we allocate all the remaining goods,
x∗T must be fully integral. Therefore we have

ugi(M)
n

− ugi(BT
g ) ≤

∑
α:x∗T

αg =1

ugi(α) (by feasibility of x∗T for PT and x∗T ∈ {0, 1})

= ugi(BT +1
g \ BT

g ) (as BT +1
g = BT

g ∪ {α : x∗T
αg = 1})

Hence, BT +1
g , the final bundle of g, is PROP for (g, i).

Fractionally Pareto optimality We show our final allocation is fPO by induction. Define the fractional
allocation xt as the union of x∗t and the previously allocated goods, i.e., xt

Et
= x∗t, xt

αg = 1 for every g ∈ G
and α ∈ Bt

g, and xt
αg = 0 on the rest of (α, g) ∈ M × G. We have x1 = x∗1 and we chose x∗1 to be fPO.

Assume xt is fPO for some t. Note that for every (α, g) with xt
αg = 0, α /∈ Bt+1

g , and (α, g) is either already
removed or will be removed during iteration t. Thus, xt+1

αg is also 0 and by Corollary C.2 xt+1 is fPO.

D Special Cases for Existence of PROP1 and EF1 Among Couples
We begin by introducing some new definitions and notations. W.l.o.g. assume that the number of goods m is
divisible by the number of groups n; otherwise, we can add dummy goods with zero value for all agents to the
set of goods M . For each agent (g, i), we define their Segment Partition as a partition of the goods into m

n
segments, each of size n, where the first segment contains their top n most valued goods, the second segment
contains the next n most valued goods, and so on. We denote this partition by Sgi = {Sgi

1 , Sgi

2 , . . . , Sgi
m/n}

where Sgi
1 is the set of n most vaued good for (g, i).

Lemma D.1. If an agent is allocated exactly one good from each segment of their segment partition, they
satisfy PROP1.

Proof. Consider an agent (g, i) and suppose w.l.o.g. that ugi(1) ≥ ugi(2) ≥ · · · ≥ ugi(m).
Let S = {1, n + 1, . . . , m− n + 1}. We first show that ugi(S) ≥ ugi(M)

n . To see this, partition the goods
into n sets based on their indices modulo n. Observe that, the set S is the most valuable of the n sets and
thus have a value of at least ugi(M)

n .
Now, consider any bundle B = {α1, α2, . . . , αm/n} such that αj ∈ Sgi

j is in the j-th segment. Let k be
the smallest integer such that k /∈ B. Note that k is either 1 or we have α1 = 1 and k = 2. Thus, 1 ∈ {α1, k}

11The formulation of P is polynomial in the size of the problem input.
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and as both α1 and k are in the first segment, we have ugi({α1, k}) ≥ ugi(1) + ugi(n + 1). As αj belongs to
the j-th segment and nj + 1 belongs to the (j+1)-th segment, we have ugi(αj) ≥ ugi(nj + 1). Hence,

ugi(B ∪ {k}) = ugi({α1, k}) +
m/n∑
j=2

ugi(αj)

≥ ugi(1) + ugi(n + 1) +
m/n−1∑

j=2

ugi(nj + 1) + ugi(αm/n)

≥ ugi(S)

≥
ugi(M)

n

implying B is PROP1 for (g, i).

Lemma D.2. If for every group g ∈ G, the segment partition of both (g, 1) and (g, 2) is the same, i.e.,
Sg1 = Sg2, a PROP1 allocation exists.

Proof. Let Sg be the segment partition of agents in group g, and let S = ⊎g∈GSg be the multiset obtained
by the additive union of all n · m

n segments. Construct a bipartite graph G = (M ∪ S, E) where there is an
edge between α ∈ M and S ∈ S iff good α belongs to the segment S. Note that both parts of G have m
nodes and G is n-regular, as each segment contains n goods and each good belongs to exactly one segment in
the segment partition of each group. Therefore, G admits a perfect matching F .For each edge (α, S) ∈ F , we
allocate good α to the group g such that S ∈ Sg. With this assignment, every agent receives exactly one
good from each segment of their segment partition and, by Lemma D.1, satisfies PROP1.

Lemma D.3. If the number of goods is at most the number of agents, i.e., m ≤ 2n, PROP1 allocation is
guaranteed to exist.

Proof. If m = n, every allocation is PROP1. Therefore, we suppose m = 2n. Using the same reasoning as in
Lemma D.1, observe that each agent (g, i) will be PROP1 if they receive a good from their n most valued
goods, Sgi

1 . We now present an algorithm that finds an allocation where this condition holds. The algorithm
works in two phases.

In the first phase, we greedily assign a good α to a group g such that α ∈ Sg1
1 ∩ Sg2

1 , which means α
makes both (g, 1) and (g, 2) PROP1. We then exclude g from further consideration. At the end of the first
phase, we either have satisfied every group or every remaining good is among the n most valuable goods of at
most one agent in each group.

In the latter case, we run the second phase. Assume we allocate k goods in the first phase. Note that k is
also the number of satisfied groups. Let M ′ be the set of remaining goods and N ′ be the set of remaining
agents. So we have |M ′| = m− k and |N ′| = 2n− 2k.

Consider a bipartite graph G = (M ′ ∪N ′, E) where (α, (g, i)) ∈ E iff α ∈ Sgi
1 . We next show that Hall’s

condition holds in G for part N ′. Note that as |Sgi
1 | = n and as we removed k goods in the first phase, each

remaining agent (g, i) is incident to at least n − k goods. For every subset A ⊆ N ′, if |A| ≤ n − k then
|NG(A)| ≥ n− k ≥ |A| as the degree of every agent is at least n− k, where NG(A) is the set of neighbors of
A in G. Otherwise, if |A| > n− k, as there are only n− k groups left there exists some group g where both
(g, 1), (g, 2) ∈ A. Now, note that (g, 1) and (g, 2) do not have any common neighbor, as if they did, we would
allocate that good to g in the first phase. As each of (g, 1) and (g, 2) are incident to at least n− k goods, we
have |NG(A)| ≥ 2n− 2k = |N ′| ≥ |A|. Thus, by Hall’s condition, there exists a matching in G that covers
N ′. That is, we can assign each of the remaining agents one of their most n valuable goods, and then we can
allocate the remaining goods arbitrarily, achieving PROP1 for every agent.

The next two lemmas assume binary valuation functions. When we say an agent (g, i) likes or approves a
good α, we mean ugi(α) = 1.

Lemma D.4. When valuations are binary and all agents approve between kn + 1 and (k + 1)n goods for
some given integer k, a PROP1 allocation exists.
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Proof. Note that each agent must receive at least k goods they like to be PROP1. Similar to the previous
lemma, the algorithm consists of two phases. In the first phase, as long as there exists a group g where
both (g, 1) and (g, 2) like one of the remaining goods, we allocate that good to g. We also make sure no
group receives more than k goods. At the end of the first phase, we either have satisfied every group or every
remaining good is liked by at most one agent in each group.

In the latter case, we run the second phase. Let M ′ be the set of remaining goods, let kg ≤ k be the
number of goods allocated to g in the first phase, and let k′ =

∑
g∈G kg be the total number of allocated

goods. Consider a bipartite graph G = (M ′ ∪N, E) where N is the set of agents and (α, (g, i)) ∈ E iff (g, i)
likes α, i.e., ugi(α) = 1. Observe that to find a PROP1 allocation, it suffices to find a subset of edges F such
that in GF = (M ∪N, F ) each α ∈M ′ has degree at most 1 and each agent (g, i) has degree at least k − ki.
This is equivalent to finding an integral solution of the following polytope:∑

α:(α,(g,i))∈E

xα,(g,i) ≥ k − kg ∀(g, i) ∈ N

∑
(g,i):(α,(g,i))∈E

xα,(g,i) ≤ 1 ∀α ∈ M ′

0 ≤ xα,(g,i) ≤ 1 ∀α ∈ M ′, (g, i) ∈ N (P)

Notice that the coefficient matrix of P is the incidence matrix of G, which is known to be totally
unimodular (TU), and therefore P is integral, i.e., every BFS of the P is integral. Thus, it remains to prove
P is non-empty, and then we are done by Proposition 2.1. We claim that P contains the following x:

xα,(g,i) =
{

k−kg

kn−k′ (g, i) likes α

0 otherwise

Note that for every g ∈ G we have k − kg ≥ 0 and kn− k′ > 0. Also
k − kg

kn − k′ ≤ 1 ⇐⇒ k − kg ≤ kn − k′ ⇐⇒ k′ − kg ≤ k(n − 1)

and the last inequality holds as each group receives at most k goods in the first phase. As (g, i) likes at
least kn + 1− k′ of the remaining goods, we have∑

α∈M′

xα,(g,i) ≥ (kn + 1 − k′) ·
k − kg

kn − k′ ≥ k − kg

On the other hand, each good α ∈ M ′ is liked by at most one agent of each group g, as otherwise we
would allocate α to g in the first phase. Hence,∑

(g,i)∈N

xα,(g,i) ≤
∑
g∈G

k − kg

kn − k′ =
kn −

∑
g∈G kg

kn − k′ =
kn − m′

kn − m′ = 1

Therefore, the polytope is non-empty, and we can make every agent PROP1.

Lemma D.5. When there are n = 3 couples and their valuation functions are binary, a PROP1 allocation
exists.

Proof. For each group g ∈ G, we partition the goods into sets of size n = 3 as follows. We first form as many
sets of three as possible using goods that are valued at 0 by both (g, 1) and (g, 2). Once fewer than three
such goods remain, we continue by forming sets from goods liked only by (g, 1), then from those liked only by
(g, 2), and finally from goods liked by both agents. Since at most two goods can remain after each of these
four phases, the total number of remaining goods at the end is at most 8, and each agent (g, i) values at most
4 of the remaining goods. Given that m is divisible by n = 3, the number of remaining goods must be either
0, 3, or 6.

To handle the remaining goods, we distinguish three cases. First, if neither agent values 4 of the remaining
goods, we arbitrarily partition them into sets of three. Second, if exactly one agent (g, i) values 4 of the
goods, we construct one set of three from the goods they like and form another arbitrary set of three from
the rest. Finally, if both agents value exactly 4 goods, the structure must be such that there are two goods
liked by both agents, two liked only by (g, 1), and two liked only by (g, 2). In this case, the remaining goods
can be split into two sets of three such that each agent fully values one of the sets.
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We denote the resulting partition for group g as Sg. Observe that, for an agent (g, i) who values ℓ goods,
the constructed partition Sg ensures that in at least ⌈ℓ/3⌉ − 1 of the sets, the agent values every good in
the set, therefore if g receives exactly one good from each set in Sg, both of its agents will be PROP1. To
find such an allocation, we construct the same n-regular bipartite graph as Lemma D.2, and we then find a
perfect matching.

Theorem 4.3. When each group g ∈ G has size 2, a PROP1 allocation is guaranteed and efficiently
computable whenever one of the following conditions holds.

• m ≤ 2n.

• m divides n and (g, 1) and (g, 2) have opposite preference rankings over the goods for all g ∈ G.

• All agents have binary valuations and approve the same number of goods.

• All agents have binary valuations and n = 3.

Proof. The statements are a direct corollary of Lemma D.3, Lemma D.2, Lemma D.4, and Lemma D.5
respectively.

Special Case for Existence of EF1
In the special case where the agents (g, 1) across all groups g have identical valuations, Bu et al. [BLL+24]
show that EF1 allocations do exists, using a variant of envy-cycle elimination due to Barman and Biswas
[BB20]. We noticed their algorithm also works for a more general case. A slightly modified version of their
algorithm is presented in Algorithm 2, adapted to our notation.

Algorithm 2 Finding an EF1 Allocation Among Couples in a Special Case
Input: A group fair division instance consisting of G, M , and a set of valuation functions {ugi}g∈G,i∈{1,2}
such that the agents (g, 1) across all group g have identical segment partition Sg1 = S
Output: An EF1 allocation

1: Let G = (V, E) be the envy-graph where each vertex represents an agent (g, 2) and E ← ∅.
2: Initialize the allocation Bg = ∅ for every g ∈ G.
3: for S ∈ S do
4: Apply the envy-cycle elimination algorithm to G to obtain a directed acyclic graph.
5: Let {i1, . . . , in} be the second agents (g, 2) in topological order of graph G, ensuring each agent does

not envy those before them.
6: for j = 1, 2, . . . , n do
7: Allocate agent ij , their favorite good α among the remaining goods in S.
8: S = S \ {α}
9: Update the envy-graph G.

10: return {Bg}g∈G

The only difference with the original algorithm ([BLL+24, Algorithm 1]) is that instead of requiring
identical valuations among agents (g, 1), we only assume that they have a common segment partition, which
is a slightly less restrictive assumption. The EF1 guarantee for the first agents (g, 1) follows directly from
Lemma D.6, which generalizes Lemma A.1. For the second agents (g, 2), EF1 can be shown using a nearly
standard envy-cycle elimination argument, as in Bu et al. [BLL+24].

Lemma D.6. For an agent (g, i), any allocation {Bg′}g′∈G where each bundle Bg′ includes exactly one good
from every segment Sgi

j in the segment partition of (g, i) — |Bg′ ∩ Sgi
j | = 1 for all g′ ∈ G and j ∈ [m/n] — is

EF1 for the agent.

Proof. Fix an arbitrary group g′. Let us denote the good in the intersection of Bg and Sgi
j with αj , and

the good in the intersection of Bg′ and Sgi
j with α′

j . As the j-th segment Sgi
j is more valuable for (g, i)

than the (j+1)-th segment Sgi
j+1, we have ugi(αj) ≥ ugi(α′

j+1) for every j ∈ [m/n − 1] which implies
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ugi(Bg) =
∑m/n

j=1 ugi(αj) ≥
∑m/n−1

j=1 ugi(α′
j+1) = ugi(Bg′ \ {α′

1}). Hence, (g, i) does not envy g′ by more
than one good.

E Proof of Theorem 4.4: Impossibility of PROP1 (or EF1) Among
Groups of Three

Theorem 4.4. For n ≥ 5 groups of three agents, PROP1 allocations need not exist, even when utilities are
binary and the groups are all identical. Moreover, deciding whether a PROP1 (or EF1) allocation exists is
NP-complete for groups of three agents, even for binary utilities.

Proof. We first present the counter-example. Consider an instance with n group and the set of goods
{1, . . . , 2n− 1}, where for each agent (g, i) we have

ugi(α) = 0 ⇐⇒ α ≡ i (mod 3)

Implying each agent disapproves either ⌊m/3⌋ or ⌈m/3⌉ of the goods, and likes at least 2m
3 − 1 = 4n−5

3
and at most 2m

3 + 1 = 4n+1
3 < 2n goods. For n > 5 we have 4n−5

3 > n, and for n = 5, as m = 9 is divisible
by 3, each agent disapproves exactly 3 goods, and likes 6 > 5 goods. In any case, when n ≥ 5, every agent
has a proportional share of larger than 1 and smaller than 2. Hence, each agent must receive at least one
good with value 1 to be PROP1. As there are 2n− 1 goods and n groups, one group receives only one good.
By construction, this good has zero value for one of the agents in the group, implying a PROP1 allocation
cannot be achieved.

To prove NP-completeness, we reduce the 3-Dimensional Matching (3DM) problem to the problem of
deciding the existence of PROP1 among groups of three with binary valuations. 3DM is a well-known NP-
complete problem, and asks whether, given sets X1, X2, X3 each of size k and a set of triples T ⊆ X1×X2×X3,
there exists a matching of size k in which each element of X1 ∪X2 ∪X3 appears in exactly one triple. Given
a 3DM instance (X1 ∪X2 ∪X3, T ), we construct a corresponding group fair division instance as follows. The
set of goods is M = X1 ∪X2 ∪X3 ∪ Y , where |Y | = 3(k + |T |+ 2). The set of groups is G = T ∪ U , where
|U | = 2k + |T |+ 3, and each group contains exactly three agents. Hence, we have m = 3(k + |T |+ 2) + 3k
goods and n = 2(k + |T | + 2) − 1 groups in total. For every triple t = (x1, x2, x3) ∈ T and i ∈ [3], agent
(t, i) approves the good xi and all the goods in Y . For every u ∈ U and i ∈ [3], agent (u, i) approves exactly
two-thirds of the goods in Y , such that every good in Y is approved by at most two agents from group u. To
achieve this, we index the goods in Y from 1 to 3(k + |T |+ 2) and let agent (u, i) disapprove good α ∈ Y iff
i ≡ α (mod 3).

We now prove that the 3DM instance (X1 ∪X2 ∪X3, T ) has a perfect matching iff the corresponding
fair division instance admits a PROP1 allocation. Note that in the constructed fair division instance, each
agent (t, i) approves more than n but fewer than 2n goods, n < |Y |+ 1 < 2n, while each agent (u, i) approves
exactly 2

3 |Y | = 2(k + |T |+ 2) = n + 1 goods. Therefore, to satisfy PROP1, each agent must receive at least
one good they approve. Since no good is approved by all three agents in any group u ∈ U , at least two goods
must be assigned to each such group. As a result, 2|U | = 4k + 2|T |+ 6 of the 3(k + |T |+ 2) goods in Y must
be allocated to groups in U , which leaves only |Y | − 2|U | = |T | − k goods in Y , along with k goods in each
set Xi. With the remaining |T | − k goods from Y , we can satisfy at most |T | − k groups in T . The remaining
k groups must be satisfied using the 3k goods in X1 ∪X2 ∪X3, and as each agent (t, i) only approves one
good from X1 ∪X2 ∪X3, group t = (x1, x2, x3) must receive {x1, x2, x3} to satisfy all three agents.

Therefore, if a PROP1 allocations exists, the 3k goods in X1 ∪ X2 ∪ X3, must be divided between k
groups of T such that each group t = (x1, x2, x3) receives exactly {x1, x2, x3} implying a perfect matching
exist in the 3DM instance (X1 ∪X2 ∪X3, T ). Conversely, assume a perfect matching exists. For each of the
k matched triples t = (x1, x2, x3), assign the goods {x1, x2, x3} to group t in the fair division instance. The
remaining |T | − k groups in T are assigned the first |T | − k goods in Y . For each group in U , assign two of
the remaining goods from Y with consecutive indices j and j + 1. This way every agent in u ∈ U approves at
least one of the allocated goods, thus satisfying PROP1.

We conclude by observing that the same reduction applies to deciding the existence of an EF1 allocation.
If a perfect matching exists, the PROP1 allocation constructed above is also EF1. Each agent (u, i) receives
one approved good, while any other group u′ ∈ U receives at most two, so (u, i) does not envy u′ by more
than one good. They also do not envy groups t ∈ T since (u, i) only approves goods in Y and t receives at
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most one good from Y . An agent (t, i) receives exactly one good they like and envy a group in U by one
good, as U receives two approved goods. And, they do not envy another group t′ ∈ T , since t′ receives either
one good of Xi or one good of Y . Conversely, if no perfect matching exists, then as shown before, a PROP1
allocation is not possible, which implies an EF1 allocation does not exist.

F Details on Experiments
We received the data through private communication with Spliddit. We used Spliddit data primarily because
no publicly available datasets for fair division currently exist. Our dataset includes all data available on the
website as of June 13, 2025. In each instance, every agent’s valuation function sums to 1000 across all goods.
The only preprocessing performed was discarding the instances containing divisible goods and removal of
goods that had zero value for all agents within an instance. We ran the experiments using a Dell Optiplex
with an Intel® Core™ i7-1185G7 CPU, 16 GB of RAM, running Windows 10, version 22H2. Linear programs
were optimized with Gurobi 11.0.3. The experimental code is available on GitHub12.

Fig. 4 shows the results of our experiment after restricting the number of goods and the groups.

(a) Only instances with m ≤ 5 goods are considered,
resulting in a total of 108 instances.

(b) Only instances with m ≥ 6 goods are considered,
resulting in a total of 146 instances.

(c) Only instances with 4 agents are considered, resulting
in a total of 120 instances.

(d) Only instances with 5 or more agents are considered,
resulting in a total of 134 instances.

Figure 4: Fraction of pairings for which fair allocations exist or are found by one of two algorithms, averaged
over all considered instances. Axioms imply axioms to their left. Error bars indicate 95% confidence intervals
(bootstrapping).

12https://github.com/HannaYzade/fair-division-among-couples-and-small-groups
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