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Abstract

The fair division of indivisible goods is not only a subject of
theoretical research, but also an important problem in prac-
tice, with solutions being offered on several online platforms.
Little is known, however, about the characteristics of practical
allocation instances and how they compare to the characteris-
tics of synthetic allocation instances. Taking inspiration from
the work of Szufa et al. (2020), we devise a map of alloca-
tion instances for indivisible goods. This map identifies two
key axes along which allocation instances differ, which help
distinguish synthetic distributions, predict key features of the
allocation instances, and can be conceptually interpreted.

1 Introduction
Over the past 20 years, the field of fair division has
made great advances in studying allocations of indivisible
goods (Amanatidis et al. 2023). To illustrate this progress,
consider the axiom of envy-freeness, which demands that
no agent prefer another agent’s bundle of allocated goods
to their own. By the end of the 20th century, economists al-
ready understood envy-freeness well in settings with divisi-
ble goods. For example — assuming that preferences are ad-
ditive, as we do throughout the paper — the allocation max-
imizing the Nash welfare is envy-free in these settings (Var-
ian 1974; Shafer and Sonnenschein 1982). Little was known,
however, about indivisible goods, a domain whose combi-
natorial structure poses additional challenges to mathemati-
cal investigation. Since envy-free allocations need not exist
for all indivisible allocation instances, could envy at least be
limited, or were large amounts of envy unavoidable?

Since then, fair-division researchers have gained a refined
understanding of the degree to which envy can (and can-
not) be avoided. Notably, the field has coalesced around
an attractive relaxation of envy-freeness — envy-freeness up
to one good, or EF1 for short (Budish 2011) — and iden-
tified elegant algorithms (Lipton et al. 2004; Caragiannis
et al. 2019) that construct EF1 allocations for any instance.
Though intriguing open questions remain,1 these questions
sharpen and extend a solid understanding of the landscape of
allocations. For alternative families of fairness axioms (such

1For example, whether envy-freeness up to any good (EFX) can
be guaranteed (e.g. Chaudhury, Garg, and Mehlhorn 2020; Plaut
and Roughgarden 2020; Amanatidis et al. 2021).

as the maximin share, proportionality, and equitability), fair
division has made similar progress in understanding which
axioms can be guaranteed even on worst-case allocation in-
stances (see Amanatidis et al. 2023).

In parallel to these theoretical advances, algorithms for al-
locating indivisible goods have entered practical usage, rais-
ing new questions for fair division. The Course Match sys-
tem, for example, assigns course seats to MBA students at
Wharton (Budish et al. 2017), and thousands of users have
used the website Spliddit (Goldman and Procaccia 2014)
to divide up estates or joint possessions. The deployment
of such systems makes it more pressing to study not only
worst-case instances but typical instances encountered in
practice as well. For example, though envy-free allocations
do not exist for all instances, should algorithms not aim for
envy-free allocations for the 71% of Spliddit instances (Bai
et al. 2022) where envy-freeness is possible? If so, how to
choose among envy-free allocations? Or, as a second exam-
ple, which algorithms can be implemented in practice? Af-
ter all, the algorithms deployed on Course Match (Budish
et al. 2023) and Spliddit (Caragiannis et al. 2019) run fast
on practical inputs, seemingly defying (worst-case) compu-
tational hardness results. Answers to these questions cannot
be found through worst-case analysis alone.

Whereas most work in fair division follows the worst-
case paradigm, a noteworthy exception is some work in
the paradigm of distributional analysis, which assumes that
allocation instances are drawn from a probability distri-
bution (Roughgarden 2020). Typically, these distributional
models assume that all agent–good values are drawn inde-
pendently, either from a single distribution (Amanatidis et al.
2017; Manurangsi and Suksompong 2019, 2021), a distribu-
tion that depends on the agent (Kurokawa, Procaccia, and
Wang 2016; Farhadi et al. 2019; Bai and Gölz 2022), or a
distribution that depends on the alternative (Dickerson et al.
2014; Farhadi et al. 2019).

On the upside, when m and n are large, these distribu-
tions generate highly structured instances, for which fair al-
locations are more prevalent. For example, basic algorithms
yield envy-free allocations for these instances, with high
probability (Dickerson et al. 2014; Manurangsi and Suksom-
pong 2021). On the flip side, we are not aware of any em-
pirical work that has tested if the structures of these random



instances are present in practical allocation problems.2 In re-
cent work, Bai et al. (2022) try to overcome some of these
concerns through smoothed analysis, which means that their
probability distributions are defined by adding random noise
to a worst-case utility profile. While they extend the pos-
sibility results for envy-freeness to more general distribu-
tions, they leave “whether our smoothed model accurately
describes the properties of real-world utility profiles that
possess envy-free allocations” to future empirical analysis.

Recently, social choice theory faced, and addressed, a
similar need for bridging the gap between theoretical work
and practical instances. Social choice is famously riddled
with worst-case impossibilities (Campbell and Kelly 2002),
and modern social choice theory has been largely divorced
from the analysis of election data. Part of the theory con-
sidered distributional models of elections, but these models
were overly prescriptive and, anyways, not easy to relate to
real-world elections. To address these concerns, Szufa et al.
(2020) created a map of elections: A two-dimensional em-
bedding of election instances (coming at first from distribu-
tional models, in subsequent works (Boehmer et al. 2021;
Faliszewski et al. 2023) also from real-world data) with the
following properties:

• This map recovers tell-tale features of the different data
sources, turning elections generated by a specific source
into a compact cluster, which evidently only covers a
small subset of interesting elections.

• Key features of election instances vary continuously over
the map, showing that an election’s position on the map
is highly informative — despite summarizing the high-
dimensional space of elections in just two dimensions.

• The map’s two axes can be given a conceptual interpre-
tation, and the boundary of the map be traced by natural
“extreme” elections.

One particular achievement of this line of work was to high-
light distributional models which, at least on the axes of the
map, capture the range of interesting elections. We will ap-
ply a similar approach to fair division.

1.1 Our Approach and Results
In fact, we create two maps of allocation instances for in-
divisible goods in this paper. In Section 3, we create a map
by closely following the methodology of Szufa et al. (2020):
we define a natural distance between fair division instances
(the minimal ℓ1 distance between utility matrices after row
and column permutations), as well as a more computation-
ally tractable proxy distance. We then use multi-dimensional
scaling () to find a 2-dimensional distance-embedding map
of a given set of allocation instances that approximately pre-
serves the pairwise distances.

Using data from three real-world data sources and several
synthetic distributions over approval instances, we show that
the map picks up on common properties of instances from
the same data source. We also show that key features of the
allocation instance (e.g., the maximum achievable Nash wel-

2Bai et al. (2022) voice doubts, but also do not provide data.

fare or the existence of envy-free allocations) are distributed
in clear patterns across the map.

In Section 4, we go beyond this heuristically generated
embedding, by providing an explicit map, i.e., an explicit
function from allocation instances into R2, which repro-
duces the general layout of the distance-embedding map.
Since an instance’s position on this explicit map is given by
the two largest singular values of its utility matrix, our ex-
plicit map is amenable to theoretical analysis. In particularly,
we tightly characterize the range of the map, and identify (up
to rounding terms) the most extreme instances in the map’s
four corners. We conclude by showing that the explicit map
can similarly segment instances sources and features.

2 Preliminaries
2.1 Model
Let [n] be a set of agents and [m] be a set of goods. For ease
of exposition, we assume throughout the paper that m ≥
n ≥ 2, which arguably includes all interesting allocation
instances. A fair-allocation instance (of indivisible goods) is
described by a utility matrix U ∈ Rn×m

≥0 whose entries ui,j

describe agent i’s utility for good j. We refer to the ith row
of this matrix as i’s utility vector u⃗i ∈ Rm

≥0. We assume that
preferences are additive, so that agent i’s utility for a bundle
S ⊆ [m] of goods is given by ui(S) :=

∑
j∈S ui,j . Since

we only consider tasks in which agents’ utilities ui([m]) for
the whole bundle are normalized to 1, we consider exactly
the set of row-stochastic matrices U .

2.2 Characteristic Instances
As useful signposts for navigating through the space of
allocation instances, we define several characteristic in-
stances. Each of these instances represents an intuitively ex-
treme scenario with easily-understood, symmetric structure.
Thanks to this structure, it is easy to remember the properties
of these characteristic instances, making them a useful point
of reference in a map of allocation instances. Due to space
limitations, we introduce these instances in words here, and
refer the reader to Fig. 7 in the appendix for a matrix repre-
sentation. For any n and m, our three characteristic instances
are the following:
Indifference (IND) models the situation where each good

is equally valuable to each agent. Thus, all entries of its
utility matrix are 1/m.

Separability (SEP) captures the scenario in which each
agent values only a single good, distinct from the goods
that all other agents value. Thus, its utility matrix is a ma-
trix with ones on the diagonal and zeros everywhere else.
In particular, if m > n, then all but the first n columns
have all-zero entries.

Contention (CON) describes the case in which one single
good is valued by all agents, and all other goods have
no value to any agent. Hence, its utility matrix has a first
column of ones, and is zero everywhere else.

In Section 4.2, the explicit map will lead us to introduce
three new characteristic instances: two variants of separa-
bility, and an entirely new instance called bicontention.
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2.3 Real-World Instances
We will map — and construct our distance-embedding
map — from a range of real-world allocation instances3. We
consider three sources of allocation instances that are de-
rived from real-world preferences over goods:

Spliddit. The heart of our real-world data is a dataset (Shah
2022) of all allocation instances submitted to Spliddit as
of 2022. This dataset is particularly valuable because it
represents instances that real Spliddit users were hoping
to solve. Since most of the 3000 Spliddit instances are
small, our evaluation will focus on two combinations of
n,m that are relatively well represented: First, we will
study the setting n = 3,m = 6, for which the num-
ber of instances is highest (1847). Since, for larger di-
mensions, the number of Spliddit instances drops precip-
itously, only 16 Spliddit instances exist for our second
evaluation scenario of n = m = 5.

Island. To obtain this dataset (Benadè 2023), Benade et al.
(2018), though motivated by a public-goods setting,
elicited additive utilities for private goods, by asking 572
crowd workers to spread 100 points between 10 items in
proportion to how much they would value these items (a
map, pocket knife, compass, etc.) if they were stranded
on a deserted island. By repeatedly sampling sets of n
agents and m goods and rescaling agents’ utilities, we
simulate a (hypothetical) allocation scenario in which
only those m goods stand to be allocated between those
n (real but fictitiously stranded) agents.

Candy. Our final dataset (Anonymized 2023) has a similar
shape and consists of the additive preferences indicated
by 48 teenagers attending a summer camp over 10 types
of snacks. We again obtain instances by subsampling, as-
suming that only one snack of each type is available.

2.4 Distributions over Synthetic Instances
In addition to the above instances derived from practical
data, we consider synthetic instances drawn from the fol-
lowing types of distributions. We introduce the resampling
and Dirichlet-resampling models (inspired by the resam-
pling model for approval elections by Szufa et al. (2022))
as we empirically checked that using them we could cover
almost the whole space of instances. The Euclidean mod-
els are standard in the social choice literature, while the at-
tributes model, also used by Boehmer, Heeger, and Szufa
(2023), seem to model a simple heuristic behavior of agents.

Resampling. For each agent we generate a set of approved
goods over which the agent splits the total utility of 1
equally. Given two parameters p ∈ [0, 1] and ϕ ∈ [0, 1],
we first choose the instance’s central approval set V ∗ by
uniformly drawing ⌊p·m⌋ goods. Then, we generate each
agent’s approval set V by copying V ∗ and then altering
it as follows: for each good, with probability 1−ϕ we do
nothing, and with probability ϕ we resample its member-
ship in V , i.e., we put it in V with probability p.

3The data was obtained on request from the data owner.

Dirichlet-Resampling. We first sample each agent’s ap-
proval set V using the resampling model. Then, we set
each agent’s utility for goods outside of V to zero, and
determine their utilities for the goods in V from a sym-
metric Dirichlet distribution of the appropriate number of
categories, with some fixed parameter α.

Attributes. Let d ∈ N be a fixed number of attributes. For
each good, we sample a vector g⃗ from [0, 1]d uniformly
at random (higher coordinates indicate that the good is
more desirable along an attribute). For each agent we
sample their utility vector a⃗ over the attributes also from
[0, 1]d (higher coordinates indicate that the agent puts
more weight on an attribute). The agent’s a utility for
good g is then proportional to the dot product of a⃗ and g⃗.

Euclidean. For a fixed dimension d ∈ N, we sample for
each agent i a vector a⃗i and each good j a vector g⃗j ,
independently and uniformly from [0, 1]d. Then, agent i’s
utility for good j is proportional to 1− ||⃗ai−g⃗j ||

maxj′∈[m] ||⃗ai−g⃗j′ ||
.

Details on the choice of samples from each distribution and
the parameters for our experiments are in Appendix B.

3 Distance-Embedding Map
We create our first map of allocation instances by following
the following two steps, introduced by Szufa et al. (2020):
First, we define appropriate structural distances between
pairs of instances. Second, we embed this high-dimensional
space (the distance matrix) on a plane in order to recognize
patterns, clusters, or similar-feature areas.

3.1 Distances between Allocation Instances
Conceptually, we would like to measure the distance be-
tween two instances with equal n and m through the entry-
wise ℓ1 norm. That is, if the instances’ utility matrices are
U1 and U2, we would calculate their distance ||U1−U2||1,1
by summing up, over all n · m coordinates, the absolute
difference between U1’s and U2’s entry in this coordinate.
This distance is, however, not desirable, since the ordering
of rows and columns in a utility matrix are arbitrary, but re-
ordering rows (i.e., agents) or columns (i.e., goods) should
not impact the distance between instances.

We define a valuation distance between instances, which
achieves anonymity and neutrality by explicitly minimiz-
ing over all row and column permutations. Putting this in
less matrix-heavy language, suppose that we have a bijec-
tion πagents : [1, n] → [1, n] (i.e., a permutation in Πn) be-
tween the agents of the first and second allocation instance,
as well as a similar bijection πgoods ∈ Πm from the goods
of the first to the goods of the second allocation instance.
By summing up, for each agent i and each good j, the abso-
lute difference |U1

i,j − U2
πagents(i),πgoods(j)

| between i’s utility
for j and the utility of i’s matched agent πagents(i) for j’s
matched good πgoods(j), we calculate the entry-wise ℓ1 dis-
tance; the valuation distance is defined as the minimum of
this distance, taken over all matchings πagents and πgoods . A
nice property of the valuation distance is that two instances
U1 and U2 have distance zero exactly if they are identical
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up to relabeling agents and goods, i.e., they are isomorphic
(analogous to that of Faliszewski et al. (2019) for elections).

While conceptually appealing, the valuation distance is
NP-hard to compute (see Theorem 5 in Appendix C.1).
Computing it for large or many (as in our experiments) in-
stances is computationally prohibitive (we used an ILP for-
mulation similar to the one by Faliszewski et al. (2019)).

To sidestep this computational difficulty, we introduce
the demand distance. Here, for each good of both instances,
we build a demand vector containing the utility values that
the good receives from different agents, sorted in decreasing
order. We then find a mapping of vectors from one instance
to the other that minimizes the sum of ℓ1 distances of the
mapped pairs. Hence, we obtain the following formal defi-
nition (Appendix C.2 contains a generalized definition).

Definition 1. Let U1 and U2 be two allocations in-
stances with n agents and m goods. The demand vec-
tor

−−→
demU (j) of good j ∈ [m] of instance U is the vector

(U1,j , U2,j . . . Un,j) sorted in descending order. The demand
distance dv(U

1, U2) of allocations U1 and U2 is then

min
πgoods∈Πm

∑
j∈[m]

||
−−→
demU1(j)−

−−→
demU2(πgoods(j))||1.

Due to the fact that this definition optimizes over only
a single permutation, the demand distance can be com-
puted in polynomial-time by finding a minimum match-
ing in a weighted bipartite graph representing the contri-
butions to the distance from matchings between each pair
of agents (see Theorem 7 and its proof in Appendix C.2).
But some precision is lost: the demand distance ignores in-
formation about the identity of agents, which can lead two
non-isomorphic instances to be at distance 0 from each other
(Fig. 8 in Appendix C.2 depicts an example). Fortunately,
we gain a drastic increase in computational efficiency with
only a small loss of accuracy. The Pearson correlation co-
efficient of the two distances for our instances4 was always
higher than 97%. This very high correlation strongly sug-
gests that using the demand distance as a proxy for the valu-
ation distance is unlikely to fundamentally change our map-
ping. Hence, we from now on focus on the demand distance.

Encouragingly, the demand distance also confirms our in-
tuition that the characteristic instances introduced in Sec-
tion 2.2 — indifference (IND), separability (SEP), and con-
tention (CON) — are indeed “extreme” instances in the
space of allocation instances. Indeed, if the number of agents
is equal to the number of goods then: (i) the characteristic in-
stances are mutually equidistant, at the distance of 2(m−1),
and (ii) no other pair of instances has strictly larger distance
(see Proposition 1 in Appendix C.2).

3.2 Studying the Distance-Embedding Map
In order to plot a map of fair divisions, we generate in-
stances, compute the demand distance between each pair
of instances, and embed these distances in two-dimensional

4Due to computational constraints, this correlation is computed
on a subset of instances datasets, described in Appendix B. See
Appendix C.1 in the appendix for a correlation diagram.
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Figure 1: Distribution of instance sources and two features
on our distance-embedding map for 3×6 and 5×5 instances.

Euclidean space using multi-dimensional scaling5 exercis-
ing mapel6 — a framework originally developed for under-
standing elections, which we extended to also handle allo-
cation instances and their features (we implemented the ap-
proach of Bredereck et al. (2021)). As mentioned in Sec-
tion 2.3, we create such maps for two combinations of n,m:
first, for n = 3,m = 6 (“3 × 6” from here on) and second
for n = m = 5 (“5× 5”).

We display the resulting maps in Fig. 1. The three char-
acteristic instances lie at distinct extreme ends of the map,
which is in line with our observations at the end of the pre-
vious paragraph. Most of the map is spanned in a triangle be-
tween these three instances, which indeed makes them use-
ful points of reference of the resulting map. The map also
suggests that, among 3 × 6 instances, instances tend to lie
closer to indifference than to either contention and separa-

5We use sklearn.manifold.MDS from Python.
6https://mapel.simple.ink
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bility. For the latter, we observe a slightly different pattern
on 5 × 5 instances, where most instances seem to lie in a
center, at some distance from each of the extreme points.

We can also immediately make out that the more numer-
ous instance sources are spread unevenly over the map: in-
stances from the candies dataset seem to be closer to sep-
arability (perhaps suggesting that the children have strong
preferences for different snacks), the island dataset seems
to vary more between indifference and contention, and the
most of the Spliddit instances are located closer to indiffer-
ence (at least for 3× 6 instances, where there is enough data
to make such observations). Though the synthetic distribu-
tions jointly cover a large degree of the map, there are big
differences between them. For example, the instances from
the attribute distribution are noticeably close to indifference,
raising the question whether this distribution produces suffi-
ciently diverse instances as a proxy for practice.

In the second row of Fig. 1, we study to which degree the
instances allow for (almost) envy-free allocations. Specifi-
cally, denote an allocation of all goods over the agents by
[m] = S1 ∪̇ S2 ∪̇ · · · ∪̇ Sn, where Si denotes the bundle
of goods given to agent i. The minmax envy is the mini-
mum, over all allocations, of the largest amount by which
some agent envies another, i.e., maxi ̸=i′ ui(Si′) − ui(Si).
Note that an instance has envy-free allocations iff the min-
max envy is at most 0 (we additionally highlight these in-
stances with a cross in Figs. 1c and 1d). But the minmax
envy gives a gradual measure of how far envy-freeness is
from being achievable (or how much it can be overattained).
As we can see, an instance’s position on the map is highly
informative for the minmax envy and the existence of envy-
free allocations. For 3× 6 instances, envy-freeness seems to
be hopeless near contention (which is also the case for con-
tention itself) and easy near separability. For the rest of the
map, minmax envy is close to zero, which means that almost
envy-free allocations exist widely, and exactly envy-free al-
locations generally exist below the upper outline of the map.
5 × 5 instances are less hospitable to envy-freeness: envy-
free allocations exist only near the lower border of the map,
and the minmax envy becomes higher (i.e., worse), the fur-
ther up on the map an instance lies.

The third row of Fig. 1 shows that the maxmim Nash wel-
fare achievable by any allocation also varies smoothly over
the map. We can see that this quantity smoothly increases
the closer an instance lies to separability. It is interesting to
note that this map differs only slightly from the maximum
utilitarian welfare that can be achieved (see Fig. 5 below).
We show the distribution of various additional features, as
well as disaggregated plots of the the distributions of in-
stance sources in Appendix F.

4 Explicit Maps
Despite its many advantages, generating maps through a dis-
tance embedding entails inherent disadvantages:

Instability. The distance-embedding map may change dras-
tically as the result of slight changes to the random seed
or the set of mapped instances.

Data Dependence. Suppose that you want to place a allo-

CON

IND SEP

1.00 1.25 1.50 1.75 2.00

CON

IND SEP

0.0 0.5 1.0

Figure 2: Distribution of σ1 (left) and σ2 (right) on our
distance-embedding map for 5× 5.

cation instance on the map to predict its properties. This
would require data for all other instances and computing
pairwise distances, which would be more difficult than
directly computing your instance’s properties.

Theoretical Intractability. Which instances are “most ex-
treme”? Where are instances from a probability distribu-
tion located on the map? Such questions can be answered
empirically, but not theoretically.

To overcome these challenges, we propose an explicit map
of fair division instances: a function µ from allocation in-
stances to R2, which replicates the general layout of the
distance-embedding map. Specifically, this function maps
n×m utility matrices as follows:

µ : Rn×m → R2 U 7→
(
σ1(U), σ2(U)

)
,

where σ1(U) and σ2(U) are the largest and second-largest
singular values of the matrix U , respectively. As Fig. 2
shows, these two values closely capture the vertical and hori-
zontal ordering of instances in our distance-embedding map,
ensuring that the two maps are closely aligned.

In this section, we show that the explicit map is similarly
informative as the distance-embedding map, while being sta-
ble, data independent, and theoretically tractable by design.

4.1 Demystifying the Singular Value Map
We begin by recalling facts about singular values that make
them suitable components for our explicit map function.
First, the singular values are invariant under permutations
of rows or columns in the utility matrix, so that relabeling
agents or goods will not change the map embedding. Sec-
ond, σ1 and σ2 are 1-Lipschitz continuous in the entries
of the matrix, which together with the previous point im-
plies that two instances with small valuation distance must
be placed near each other on the explicit map. Third, adding
a column of zeros, i.e., a good that no agent values, does
not change the singular values, which means that instances
can be naturally compared across different m. Finally, im-
plementations of efficient algorithms for computing singular
values are readily available (e.g., in numpy), which makes it
easy to compute a given instance’s position on the map.

We now aim to give the reader an intuition for what infor-
mation σ1 and σ2 express about an allocation instance and

5



why. We begin with σ1, which can be expressed as

σ1 = max
v⃗1∈Rm,∥v⃗1∥=1

∥U v⃗1∥, (1)

where ∥·∥ is the Euclidean (ℓ2) norm. Since we rarely think
about utility matrices as linear functions over unitary vec-
tors, it is instructive to pretend that the norms in Eq. (1) were
ℓ1-norms. In this case (choosing v⃗1 nonnegative w.l.o.g.),
the U v⃗1 being optimized over are the convex combination
of U ’s columns, for the coefficients given by v⃗1. If we were
indeed maximizing the ℓ1-norm of U v⃗1, σ1 would be the
largest column sum, or maximum demand. Though the ℓ2

norm slightly complicates the picture,7 σ1 and the maximum
demand are very highly correlated: across our instances with
n = 3, for example, the correlation coefficient is 97%. Thus,
σ1 can be understood to a good approximation as the maxi-
mum demand, up to shifting and rescaling.

To interpret the second-largest singular value σ2, we re-
call how the singular value decomposition of an Rn×m ma-
trix U can be used to find a low-dimensional embedding
of the row vectors (in our case, the agents’ utility vec-
tors).8 For example, the line through the origin span({v1}),
spanned by the argmax of Eq. (1), is the best 1-dimensional
space to embed the rows in, in the following sense: if we
sum up, for each row u⃗i ∈ Rm, the squared length of
its projection onto this space, span({v1}) maximizes this
sum across all 1-dimensional subspaces. In fact, this sum
of squared projection lengths is σ2

1 , which means that σ1

measures “how much” of the row vectors can be captured
by a 1-dimensional embedding. Similarly, σ2, which can be
calculated as maxv⃗1∈Rm,∥v⃗2∥=1,v⃗2⊥v⃗1∥U v⃗2∥, measures how
much the row embedding improves when going from the
optimal 1-dimensional space span({v1}) to the optimal 2-
dimensional space span({v1, v2}).

Thus, as a first approximation, σ2 is a measure of how
diverse the agents’ utilities are. It is zero if all agents have
the same utility vector, and it is large when there are blocks
of agents that completely disagree on which goods have
nonzero value. To again find a more elementary correlate, we
define a fair division’s “preference diversity” as the mean,
over pairs of agents in the instance, of the ℓ2 distance of
their utility vectors. Again, we find a very high correlation
(96% correlation coefficient for n = 3).

4.2 Theoretical Properties of the Map
We theoretically characterize the image of our map func-
tion µ for given dimensions n,m. Our task — characterizing

7It gives an advantage to combinations of columns in which
several columns have positive coefficients, and it encourages mak-
ing a few coordinates of U v⃗1 large rather than all.

8See Blum, Hopcroft, and Kannan (2020, Ch. 3) for a detailed
explanation. Though singular values are closely connected to di-
mensionality reduction, our use is non-standard. Applying value
decomposition directly to find a 2D embedding of utility matrices,
would result in embeddings highly sensitive to row and column
permutations and thus not fruitful. One way to understand the dis-
cussion above is that we map each utility matrix to the square roots
of the top-two eigenvalues in its principle component analysis; ex-
cept that we do not shift column sums to zero, since this would,
e.g., make IND and CON indistinguishable.

0 √
n/m

√
n/2

√
n/m

√
n/2

√
n

WSEP
⟨
√
1/⌊m/n⌋,

√
1/⌊m/n⌋⟩

WSEPf
⟨
√

n/m,
√

⌊m/n⌋n/m⟩

BIC
⟨
√

⌊n/2⌋,
√
⌊n/2⌋⟩

CON
⟨
√
n, 0⟩

IND
⟨
√

n/m, 0⟩

σ2 ≥ 0

σ1 ≥
√

n/m

σ2 ≤ σ1

σ2
1 + σ2

2 ≤ n

σ2

σ1

Figure 3: Bounding inequalities of the map, and locations
⟨σ1, σ2⟩ of characteristic instances.

the combinations of singular values in stochastic rectangular
matrices — is of interest independently to our fair-division
setting, but has, to our knowledge not previously been under-
taken. This process will give us a more precise understand-
ing of what makes instances extreme along either dimension
of our map. Figure 3 summarizes both the outlines of the
map and the positions of characteristic instances, which can
guide the reader through this section. We orient on the page
such that σ1 grows in the “North” and σ2 in the “East” di-
rection, which by Fig. 2 generally aligns with how we have
presented the distance-embedding map.

Whereas CON and IND still mark the left corners of our
map, the other two corners lead us to new characteristic in-
stances. For the lower-right corner, we refine our definition
of separability since SEP (with σ1 = σ2 = 1) only lies on
the lower boundary if n = m. If m is a proper multiple of n,
the lower-left corner is instead inhabited by wide separabil-
ity, in which every agent values m/n disjoint goods, giving
equal value n/m to each of them. In Appendix D.1, we ex-
tend wide separability to n ̸ | m in two slightly different
ways: one, WSEP, always lies on the right border while the
other, WSEPf always lies on the lower border.

The final characteristic instance is bicontention, or BIC,
in which half of the agents place all utility on one common
good and half of the agents on a second common good. (For
odd n, one agent places all value on a third good.) Since
this instance combines highly demanded goods with sharply
distinct utility vectors, it always lies on the right border and,
for even n, is exactly located in the upper right corner.

The main results of this section address all four sides of
the map. For each side, we bound the map by an inequal-
ity, and show that the inequality is sharp using our char-
acteristic instances. For three of the sides, we give simple,
necessary-and-sufficient conditions for an instance lying on
the boundary. If n is even and divides m, as in the left sub-
plot of Fig. 4, our characteristic instances lie exactly in the
four corner points of the map, and we can exactly trace three
of the four sides by interpolating between corner instances.
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Figure 4: Explicit map for ⟨n,m⟩ = ⟨6, 6⟩ and ⟨3, 8⟩. By
Theorems 1 to 4, the map is contained in the shaded area.
Lines trace interpolations between named instances (see Ap-
pendix D).

If these divisibility conditions do not hold, as illustrated in
the Fig. 3 and the right subplot of Fig. 4, the characteristic
instances lie in the corner up to rounding terms. Proofs of
our characterizations tend to be short and cute, but are de-
ferred to Appendix E.

Theorem 1 (“West”). σ2 is at least 0. An instance lies on
this boundary iff all agents have the same utility vector. In
particular, IND, CON, and their convex combinations lie on
this boundary.

Theorem 2 (“South”). σ1 is at least
√
n/m. An instance

lies on this boundary iff all columns of its utility matrix have
an equal sum (namely, n/m). In particular, IND, WSEPf ,
and their convex combinations lie on this boundary.

Theorem 3 (“North”). σ1 is at most
√
n− σ2 ≤

√
n. An

instance lies on this boundary iff each agent values a single
good, and if at most two goods are valued by any agent. In
particular, IND and, if n is even, BIC lie on this boundary.

Theorem 4 (“East”). σ2 is at most σ1. If U , after row
and column permutation, has the block matrix structure(
A 0 0
0 A 0
0 0 B

)
for rectangular matrices A,B and σ1(A) ≥

σ1(B), this is sufficient for lying on the boundary. (If B has
height 0, we set σ1(B) = 0.) In particular, WSEP, BIC,
and a suitable interpolation lie on this boundary.

We conclude the theoretical discussion by pointing out
that existing and future results in the theory of nonnega-
tive random matrices have implications for our explicit map.
For example, consider a random process in which a single
utility vector is drawn from a flat Dirichlet distribution and
then duplicated for all agents (thus, σ2 = 0). For this distri-
bution over allocation instances, Crumpton, Fyodorov, and
Vivo (2022) recently derived that E[σ2

1 ] =
2n
n+1 as well as

formulas for σ2
1’s higher moments. Brito, Dumitriu, and Har-

ris (2022) study a random process, which, for fixed integers
d2 ≥ d1 ≥ 3, an instance is uniformly chosen in which each
agent values d1 goods at value 1/d1, and each good is valued
by d2 agents. In these instances, σ1 always equals

√
n/m,

CON

IND SEP/BIC

WSEP(f)

1.0 1.5 2.0 2.5 3.0
0.0 0.5 1.0

0.6

0.8

1.0

1.2

1.4

1.6

1.8 CON

IND

SEP/BIC

WSEP(f)
1.0

1.5

2.0

2.5

3.0

Figure 5: Distribution of maximum utilitarian welfare, on
3×6 instances, on our distance-embedding (left) and explicit
(right) map.

and the authors show that, as m,n → ∞, σ2 converges to
(
√
d1 − 1 +

√
d2 − 1)/d1 in probability.

4.3 Empirical Comparison

Comparing the explicit map to our distance-embedding map
(see Fig. 5 for an example feature), we see that the two
maps have a similar layout and communicate similar infor-
mation overall. In Appendix F, we provide extensive dia-
grams showing that this similarity extends to other features,
the identifiability of instance sources, and to the 5 × 5 map
as well. The specific feature being mapped is the maximum
utilitarian welfare achievable by any allocation. Like the
maximum Nash welfare before, it is higher the closer the
instances are to our different variants of (wide) separabil-
ity. On the one hand, a general advantage of the distance-
embedding map is that it tends to fill the entire map at a
relatively uniform density, whereas the explicit map clusters
some instances very densely, for example close to indiffer-
ence and on the σ2 = 1 line. On the other hand, the clusters
identified by the explicit map tend to indeed be very homo-
geneous along the features we investigate, which means that
the explicit map picks up on meaningful patterns in the data.

5 Conclusion
In this paper, we introduced two, closely related maps for
allocation instances. We hope that our exploration initiates
discussions about which kinds of assumptions on realistic
allocation instances are reasonable to make, and how fair-
division theory can leverage these assumptions to provide
algorithms with stronger fairness properties for the bulk of
practical allocation instances.

A key limitation of our work so far is that preference data
for fair-division problems is much less accessible — and the
instances that are accessible more small-scale — compared
to e.g. election data (Mattei and Walsh 2013). As a com-
munity, we should make efforts to collect, and to make cen-
trally available, such datasets. More and larger-scale real-
world data could show whether distance-embedding maps
will continue to align with the explicit map we have con-
structed, or whether it will reveal additional key dimensions
among which allocation instances differ in practice.
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A Alternative Notation
In this appendix, we partially use the following alternative
notation which easily translates into that of our allocation
instances.

Consider a set of resources R, a set of agents A. Let, for
each agent a ∈ A, ua : R → N be a’s utility function.
For bundle R ⊆ R of resources and some agent a ∈ A,
we denote by ua(R) :=

∑
r∈R ua(r), the utility that a

gives to bundle R. Hence, we study cardinal monotonic ad-
ditive preferences. An allocation task is a triple (A,R,U),
where U is a collection of utility functions, one per agent, as
specified in the paragraph above.

B Details on Datasets and Experiments
We combined various statistical cultures and the real-world
data to construct datasets that we focus on in the paper. Due
to the obvious tradeoff between the computation time of our
experiment and the size of the datasets, we kept the number
of synthetic instances rather low to better observe the real-
life related instances.

For the 5x5 small dataset consisting of instances with
5 agents and 5 goods, we generated 4 instances according
to: 1- and 2-Euclidean models; the attributes models with
2 and 5 attributes; the resampling and Dirichlet-resampling
models with all values {0.2, 0.4, 0.6} of parameter p and
all values {0.2, 0.8} of parameter ϕ. Furthermore, we added
20 instances sampled (as described in the previous section)
from the Island data, 20 instances from the Candies data, and
all 16 Spliddit instances. Finally, we put the respective CON,
IND, SEP, WSEP, and BCON instance. To verify our experi-
ment for more real-world-insipired data, we also constructed
the 5x5 large dataset, where we increased the number of Is-
land and Candies distances to 500 (we wanted to keep the
Spliddit instances as they are provided, without sampling,
so we could not put more instances to the large dataset).
Analogously, we constructed the 3x6 small and 3x6 large
datasets consisting of instances with 3 agents and 6 goods.
The only exception being that in the 3x6 large dataset, we
took 250 instance of the Island and Candies data. However,
since there were enough Spliddit instances of this size, we
also took 250 Spliddit instances.

We generated each of the datasets multiple times (note
that generating real-life inspired data is a random process)
and repeat all our experiments. The obtained results were
qualitatively the same. Due to the limitations of the Splid-
dit data, where there is very few instances with more than
5 agents, we decided not to present experiments for larger
number of agents.

C Deferred Details from Section 2
C.1 Valuation Distance
Denote Π(A,A′) by ΠA and Π(R,R′) by Πm. Then, con-
sider some πa ∈ ΠA and some πgoods ∈ Πm, which we call,
respectively, an agent matching and a good matching. For
some distance δ on nonnegative real numbers, we let

Dδ(T , T ′, πa, πgoods) :=
∑
a∈A

∑
r∈R

δ(ua(r), uπa(a)(πgoods(r)))

and refer to Dδ(T , T ′, πa, πa) as the δ-distance between T
and T ′ witnessed by πa and πgoods . The δ-distance be-
tween T and T ′, denoted by dδ(T , T ′), is then the mini-
mal δ-distance between T and T ′ witnessed over all pair of
matchings; formally:

dδ(T , T ′) := min
π′

a∈ΠA,π′
goods∈Πm

D(T , T ′, π′
a, π

′
goods).

We are now ready to define our valuation distance that,
intuitively, is the smallest sum of difference in agents valua-
tions of the goods achievable over all possible matchings of
agents and goods.

Definition 2. Given two task allocations T = (A,R,U)
and T ′ = (A′,R′,U ′), its valuation distance dv(T , T ′) is:

dv(T , T ′) := dℓ1(T , T ′) :=

min
πa,πgoods

∑
a∈A

∑
r∈R

∣∣ua(r)− uπa(a)(πgoods(r)))
∣∣ .

It is easy to see that a valuation is an isomorphic distance.
Naturally, if the tasks are isomorphic, then there exists some
pair of agent and good mathings that witness distance 0. On
the other hand, if there is no such pair, there is no possi-
bility that the valuation is 0. The property of being an iso-
morphic distance, however, comes at a cost of computational
intractability.

Theorem 5. Given two task allocations T and T ′ and an
real number d, deciding whether dv(T , T ′) ≤ d is NP-hard.

Proof. We give a polynomial-time many-one reduction from
an NP-hard problem dSpear-ISOMORPHIC DISTANCE. In this
problem we are given two ordinal elections E = (C, V )
and E′ = (C ′, V ′) such that |C| = |C ′| and |V | = |V ′|
and an integer k. Assuming that for some voter a and can-
didate b (where both a and b are part of the same election),
we denote by posa(b) the position of candidate b according
to the ranking of a, we ask whether there exist two permuta-
tions ρ : C → C ′ and ϕ : V → V ′ such that

D(ρ, ϕ) :=
∑
v∈V

∑
c∈C

∣∣∣posv(c)− posϕ(v)(ρ(c))
∣∣∣ ≤ k.

Given the instance I of dSpear-ISOMORPHIC DISTANCE as
described above, our reduction constructs an instance I ′ of
our problem as follows. We construct allocation task T us-
ing election E from the original instance as follows. Task T
consists of |V | agents, denoted as A, a(v1) to a(v|V |) repre-
senting voters and |C| goods, denoted as R, r(c1) to r(c|C|)
representing candidates. Taking a normalizing factor F =

1 + 2 + . . . + |C| =
(|C|

2

)
, for each voter v ∈ V we set the

corresponding agent’s utility function to be ua(v)(r(c)) =
posv(c)/F , for each c ∈ C. It can be easily verified that the
values of the utility function of each agent in T sum to 1.
By analogously constructing allocation task T ′ using elec-
tion E′ and setting the distance d in question regarding in-
stance I to value d := k/F , we obtain a new instance I ′ of
our problem.
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Figure 6: Correlation between our distances for the small
5x5 dataset (left) and the small 3x6 dataset (right).

We show that for each pair of permutations ρ : C → C ′

and ϕ : V → V ′ such that D(ρ, ϕ) ≤ k, there are two per-
mutations πa and πgoods such that witness that dv(T , T ′) ≤
d. Since we also show that the opposite direction is true as
well, we obtain that the reduction is correct.

Suppose that we have ρ and ϕ that meet the above as-
sumption. Consider the following πa and πgoods . For each
voter v ∈ V and candidate c ∈ C, let πa(a(v)) = a(ϕ(v))
and πgoods(r(c)) = r(ϕ(c)). In words, permutation πa maps
agents exactly as permutation ϕ maps their respective vot-
ers, and so does permutation πgoods with respect to goods
and candidates. Now, in the series of algebraic transforma-
tions, let us analyze the relation of D(ρ, ϕ) and d:

D(ρ,ϕ)/F =

∑
v∈V

∑
c∈C

∣∣∣posv(c)− posϕ(v)(ρ(c))
∣∣∣

F
=∑

v∈V

∑
c∈C

∣∣∣∣posv(c)
F

−
posϕ(v)(ρ(c))

F

∣∣∣∣ =∑
v∈V

∑
c∈C

∣∣ua(v)(r(c))− uϕ(v)(ρ(c))
∣∣ =∑

a′∈A

∑
r′∈R

∣∣ua′(r′)− uπa(a′)(πgoods(r
′))
∣∣ =∑

a′∈A
dℓ1(ua′ , πgoods(uπa(a′))) = d.

So, clearly, if D(ρ, ϕ) ≤ k, then dv(T , T ′) witnessed by πa
and πgoods is smaller than k/F = d. On the other hand, if
there exist πa and πgoods that witness dv(T , T ′) ≤ d, then
one can construct ρ and ϕ for which D(ρ, ϕ) ≤ dF = k.

The computational hardness of the task of computing the
valuation distance comes from the fact that one seeks an op-
timal value depending on two matchings simultaneously. It
turns out that this intuitive understanding can be well sup-
ported by a formal claim. We show that for a given either
the agent matching or the good matching, the optimal value
of the distance as witnessed by the given matching can be
computed in polynomial-time.

Theorem 6. Given two task allocations T , T ′, a
(fixed) agent matching πa, a real number d, deciding
whether dv(T , T ′) as witnessed by πa is at most d is
polynomial-time solvable. The same holds for the case of
a given good matching.

Proof. For two allocation tasks T = (A,R,U), T ′ =
(A′,R′,U ′), with R = {r1, r2, . . . , rn}, R′ =
{r′1, r′2, . . . , r′n}, and an agent matching πa ∈ ΠA, we give
a polynomial-time algorithm that computes a good match-
ing πgoods minimizing

D(πgoods) :=
∑
a∈A

∑
r∈R

∣∣ua(r)− uπa(a)(πgoods(r))
∣∣ .

In words, the algorithm computes the minimal achievable
distance as witnessed by the given agent matching πa.

The algorithm constructs a complete bipartite weighted
graph G consisting of vertices x1, x2, . . . , x|R| of one
partition and consisting of vertices y1, y2, . . . , y|R|
of the other partition. For each pair i ∈ [|R|],
j ∈ [|R|], the weight w({xi, yj}) of edge {xi, xj}
is
∑

a∈A
∣∣ua(ri)− uπa(a)(r

′
j)
∣∣. Finally, the algorithm looks

for a minimum weight perfect matching (which always
exists) in G.

Let M be some perfect matching in G. Clearly, this
perfect matching corresponds to exactly one good match-
ing π′

goods ∈ Πm. Let us now compute the weight w(M)
of M :

w(M) =
∑

{xi,yj}∈M

∑
a∈A

∣∣ua(ri)− uπa(a)(r
′
j)
∣∣ =

∑
a∈A

∑
r∈R

∣∣ua(r)− uπa(a)(π
′
goods(r))

∣∣ = D(πgoods).

Since our algorithm finds the minimum-weight matching,
the correctness follows.

The algorithm runs in polynomial time because finding a
minimum-weight matching is well-known polynomial-time
solvable task and building the bipartite graph is quadratic
with respect to the number of goods (which is polynomially
bounded in the input size). The proof for the case of a given
good matching is analogous.

C.2 Demand Distance
For some good r ∈ R, let dem(r) =
(ua1(r), ua2(r), . . . , uan(r)) be a demand vector of r.
By

−−→
dem(r), let us denote the sorted demand vector that

results from ordering dem(r) descending. For the sake of
readability, we ofted drop “sorted,” when it is implied by
the context. Consider some good matching πgoods ∈ Πm.
For some distance δ on nonnegative real vectors, let

D̂δ(T , T ′, πgoods) :=
∑
r∈R

δ(
−−→
dem(r),

−−→
dem(πgoods(r))).

Similarly to the valuation distance, the demand distance
is then the minimum of the above-defined formula over all
possible good matchings taking δ to be dℓ1 .
Definition 3. Given two task allocations T = (A,R,U)
and T ′ = (A′,R′,U ′), its demand distance dd(T , T ′) is:

dv(T , T ′) := min
πgoods

D̂dℓ1
(T , T ′, πgoods) :=

min
πgoods

∑
r∈R

dℓ1(
−−→
dem(r),

−−→
dem(πgoods(r))).

11



INDm :=


1/m 1/m · · · 1/m
1/m 1/m · · · 1/m

...
...

. . .
...

1/m 1/m · · · 1/m

 SEPm :=


1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

 CONm :=


1 0 · · · 0

1 0 · · · 0

...
...

. . .
...

1 0 · · · 0


Figure 7: Matrices representing characteristic instances: Indifference (IND), Separability (SEP), and Contention (CON).

Observe that to compute the demand distance between
two allocations tasks, one needs to find (only) a single opti-
mal matching. Hence, this distance can be computed in poly-
nomial using standard matching algorithms.

Theorem 7. Given two task allocations T and T ′ and a real
number d, deciding whether dd(T , T ′) ≤ d is polynomial-
time solvable.

Proof. We give an algorithm that first constructs a weighted
bipartite graph (representing the task of computing the de-
mand distance) and then computes its minimum weight per-
fect matching, which represents the optimal good matching.

To be specific, our algorithm proceeds as follows. For
each r ∈ R ∪ R′, it first computes

−−→
dem(r). Then, it con-

structs a bipartite graph G with one partition consisting of
the goods R and the other one of the goods R′. For every
pair (r, r′) ∈ R×R′, the algorithm adds an edge {r, r′} to G

and sets its weight w(r, r′) := dℓ1(
−−→
dem(r),

−−→
dem(r′)). Fi-

nally, the algorithm finds a minimum weight perfect match-
ing, say M , of G.

Since M is a perfect matching (and |R| = |R′|), it is
clear that M represents a good matching πgoods such that
for each {r, r′} ∈ M , πgoods(r) = πgoods(r

′). Hence, the
total weight w(M) of M can be expressed as

w(M) :=
∑

{r,r′}∈M

dℓ1(
−−→
dem(r),

−−→
dem(r′)) =

∑
r∈R

dℓ1(
−−→
dem(r),

−−→
dem(πgoods(r))).

As a result, a minimum weight perfect matching in graph G
yields a good matching that witnesses the demand distance
and the weight of this matching is exactly the requested de-
mand distance.

Note that computing a minimum weight perfect matching
is polynomial-time solvable. Thus, our algorithm also runs
in polynomial time.

Note that the procedure described in the proof of Theo-
rem 7 is constructive and, in fact, solves the optimization
variant of the problem of computing the demand distance
between two allocation tasks.

Proposition 1. Let U and U ′ be two allocations instances
with n agents and m goods. Then, the valuation distance
dv(U,U

′) and the demand distance dd(U,U
′) are at most

2n− 2n
m .

allocation task T
r1 r2 r3 r4

a1 2 4 6 8
a2 3 3 6 8
a3 6 8 6 0
a4 8 6 0 6

Demand vectors for T
r1 r2 r3 r4

8 8 6 8
6 6 6 8
3 4 6 6
2 3 0 0

allocation task T ′

r′1 r′2 r′3 r′4

a′1 2 4 6 8
a′2 3 3 6 8
a′3 6 8 0 6
a′4 8 6 6 0

Demand vectors for T ′

r′1 r′2 r′3 r′4

8 8 6 8
6 6 6 8
3 4 6 6
2 3 0 0

Figure 8: The task allocations demonstrating a zero demand
distance (note the demand vectors and apply matching ri
to r′i, for all i ∈ {1, 2, 3, 4}) but a non-negative valuation
distance (to verify, perform an exhaustive check).

D Deferred Details from Section 4.2
D.1 Wide Separability
We propose two ways of generalizing this instance to m
not divisible by n, setting ℓ := ⌊m/n⌋: In the first variant,
WSEP, each agent values ℓ goods at 1/ℓ, and thus m mod n
goods have no value for any agent. In the second variant,
WSEPf , each agent values the ℓ goods that no other agent
values at n/m, and the final m mod n goods have a value
of 1−ℓ n/m

m mod n for every agent. WSEP always lies on the East
and WSEPf on the South border; if n | m, they coincide,
meeting in the South-East corner.

E Deferred Proofs
Theorem 1 (“West”). σ2 is at least 0. An instance lies on
this boundary iff all agents have the same utility vector. In
particular, IND, CON, and their convex combinations lie on
this boundary.

Proof. Singular values are always nonnegative real num-
bers. It is well-known that the second singular value is 0
iff the matrix has rank 1 (or zero), i.e., if all rows are lin-
early dependent. Since all row sums are 1, this is equivalent
to all rows being identical. Since IND and CON each have
only identical rows, they have σ2 = 0. The same property is
inherited by their convex combinations, which, by the conti-
nuity of the singular values, must trace the entire boundary
between IND and CON.
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Theorem 2 (“South”). σ1 is at least
√
n/m. An instance

lies on this boundary iff all columns of its utility matrix have
an equal sum (namely, n/m). In particular, IND, WSEPf ,
and their convex combinations lie on this boundary.

Proof. By Eq. (1),

σ1 = max
v⃗1∈Rm,∥v⃗1∥=1

∥U v⃗1∥

≥

∥∥∥∥∥∥∥U


1/
√
m

1/
√
m

...
1/

√
m


∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥


1/
√
m

1/
√
m

...
1/

√
m


∥∥∥∥∥∥∥ (by row stochasticity)

=
√

n/m.

Note that the vector being multiplied with U in the second
row has dimension m (thus norm 1), but the vector in the
third row has dimension n.

We now show that, whenever this inequality is tight,
all column sums must be n/m. This extends a widely
known proof (presentation adapted from user1551 on Math
Stack Exchange) showing that, among square matrices, a
row-stochastic matrix has σ1 = 1 iff it is doubly stochastic,
i.e., its column sums are also equal to one. In the following,

we set 1t to denote the vector

(
1
...
1

)
∈ Rt, and denote the

vector dot product by ⟨·, ·⟩.

m =
m

n
⟨1n,1n⟩

=
m

n
⟨1n, U em⟩ (by row stochasticity)

=
〈
UT

(m
n
1n

)
,1m

〉
≤
∥∥∥UT

(m
n
1n

)∥∥∥ · ∥1m∥ (Cauchy-Schwartz)

≤ σ1(U
T )

m

n
∥1n∥ ∥1m∥

(property of Operator Norm)

= σ1(U)
m

n
∥1n∥ ∥1m∥ (σ1(A) = σ1(A

T ))

=

√
n

m

m

n
∥1n∥ ∥1m∥ (by assumption)

=

√
n

m

m

n

√
n
√
m

= m.

Since both ends of the inequality chain are equal, all terms
along the chain must be equal. Since the Cauchy-Schwartz
step was an equality, we know that UT (m/n1n) is a scalar
multiple of 1m; since ∥UT (m/n1n)∥ ∥1m∥ = m, we
now that ∥UT (m/n1n)∥ =

√
m; finally, we now that

UT (m/n1n) is nonnegative. Taking these facts together,
we conclude that UT (m/n1n) = 1n, which means that all
column sums of U are equal to n/m.

It is easy to see that IND, WSEPf , and their linear inter-
polations all have column sums of n/m, which concludes
the claim.

Theorem 3 (“North”). σ1 is at most
√
n− σ2 ≤

√
n. An

instance lies on this boundary iff each agent values a single
good, and if at most two goods are valued by any agent. In
particular, IND and, if n is even, BIC lie on this boundary.

Proof. Setting σ1, σ2, . . . , σr for the singular values of
some matrix, it is well known that

∑r
t=1 σ

2
t equals the

square of the matrix’ Frobenius norm, i.e., equals the sum
of squares across the entries of the matrix. That is, for a ma-
trix U ,

r∑
t=1

σ2
t =

n∑
i=1

m∑
j=1

u2
i,j .

Since all entries of our matrix are between 0 and 1, the ith
row’s contribution to the right-hand side is

∑m
j=1 u

2
i,j ≤∑m

j=1 ui,j = 1, and this inequality is tight iff agent i val-
ues one item at 1 and all others at 0. It follows that

σ2
1 + σ2

2 ≤
r∑

t=1

σ2
t ≤ n,

where the inequality is tight exactly iff (a) all agents single-
mindedly value a single good (which makes the second in-
equality tight) and (b) all σt for t ≥ 3 are zero. Part (b) is the
case iff U has rank at most 2. Assuming part (a), U ’s rank is
exactly the number of distinct goods which some agent val-
ues single-mindedly. Taking square, we obtain the desired
inequality with its necessary-and-sufficient condition.

Clearly, this condition is satisfied by IND and by BIC if
n is even. Note that there is a natural way to interpolate be-
tween these two, where one good is single-mindedly valued
by t agents and a second good by n− t agents. Clearly, each
of these points lies on the boundary. If one linearly interpo-
lates between successive values of t, the interpolations have
one agent who values two items, which removes this interpo-
lation point from the boundary. But of course this operation
does not move the instance far from the boundary. Figure 4
shows this interpolation as the blue line following the upper
boundary of the map.

Theorem 4 (“East”). σ2 is at most σ1. If U , after row
and column permutation, has the block matrix structure(
A 0 0
0 A 0
0 0 B

)
for rectangular matrices A,B and σ1(A) ≥

σ1(B), this is sufficient for lying on the boundary. (If B has
height 0, we set σ1(B) = 0.) In particular, WSEP, BIC,
and a suitable interpolation lie on this boundary.

Proof. σ2 ≤ σ1 holds by definition of the singular values.
Let U be a utility matrix with the block matrix structure

from the theorem statement (since the singular values are in-
variant to row and column permutations, it sufficies to con-
sider such matrices directly). One important property of sin-
gular values we have not used yet is that the singular values
of a matrix U are the square roots of the eigenvalues of the
Gram matrix UTU (or, equivalently, for UUT ).
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Given the block matrix structure,

(
A 0 0
0 A 0
0 0 B

) (
A 0 0
0 A 0
0 0 B

)T

=

AAT 0 0
0 AAT 0
0 0 BBT

 .

It is well known that the eigenvalues of such a block diago-
nal matrix are simply the eigenvalues of the blocks AAT ,
AAT , and BBT combined (with multiplicity preserved),
which means that the singular values of U are just the sin-
gular values of A, A, and B combined. In particular, all
singular values of A will appear in U at least twice. By
σ1(A) ≥ σ1(B), the largest singular value is one of these
duplicated singular values, which implies that σ1(U) =
σ2(U) = σ1(A).

After reshuffling the columns, WSEP looks as follows
(setting again ℓ := ⌊m/n⌋):

1/ℓ · · · 1/ℓ 0 0 0 0 0 0 0 0 0 0
0 0 0 1/ℓ · · · 1/ℓ 0 0 0 0 0 0 0
0 0 0 0 0 0 1/ℓ · · · 1/ℓ 0 0 · · · 0

. . .
0 0 0 0 0 0 0 0 0 0 1/ℓ · · · 1/ℓ


where the lines indicate the division of the blocks. The
symmetry of the instance ensures that (unless B has height
0) σ1(B) = σ1(A), so WSEP lies on this boundary.

For BIC, the situation is even simpler:

1 0 0 0 · · · 0
... 0 0 0 · · · 0
1 0 0 0 · · · 0
0 1 0 0 · · · 0

0
... 0 0 · · · 0

0 1 0 0 · · · 0
0 0 1 0 · · · 0


In this case, the singular values are easy to calculate:
σ1(A) =

√
⌊n/2⌋ which is at least σ1(B) = 1.

Interpolating between both matrices without leaving the
boundary is not straight-forward. For this, we first linearly
interpolate from WSEP to SEP. For some 0 < θ < 1, this
means that each agent approves one good at θ + (1 − θ)/ℓ
and ℓ−1 goods at (1−θ)/ℓ. For this interpolation, the block
structure remains the same as the one discussed for WSEP
and preserves the same symmetry, which is why the interpo-
lation stays on the boundary.

The interpolation from SEP to BIC proceeds in discrete
steps as follows: For 1 ≤ r ≤ ⌊n/2⌋, r many agents only
value the first good, r agents value only the second good, and
the remaining agents value each a separate good. One veri-
fies that this recovers SEP for r = 1 and BIC for r = ⌊n/2⌋,
and that each of these stages can be represented in the block
matrix shape, where A is a column of r ones, and B is the
identity matrix with possibly zero columns attached to its
right. Then, σ1(A) =

√
r which is at least σ1(B) = 1,

which means that this interpolation step lies on the bound-
ary. By linearly interpolating between successive steps, one

obtains (after reordering) matrices of the shape

1 0 0 0 0 0 · · · 0
... 0 0 0 0 0 · · · 0
1 0 0 0 0 0 · · · 0
θ 1− θ 0 0 0 0 · · · 0
0 0 1 0 0 0 · · · 0

0 0
... 0 0 0 · · · 0

0 0 1 0 0 0 · · · 0
0 0 θ 1− θ 0 0 · · · 0
0 0 0 0 1 0 · · · 0
0 0 0 0 0 1 · · · 0

0 0 0 0 0 0
. . . 0



,

which one verifies also lie on the boundary. As a result, we
can continuously9 interpolate from WSEP to BIC while
staying on the right boundary. It follows that this interpo-
lation traces the entire right boundary between WSEP and
BIC.

Proposition 1. Let U and U ′ be two allocations instances
with n agents and m goods. Then, the valuation distance
dv(U,U

′) and the demand distance dd(U,U
′) are at most

2n− 2n
m .

Lemma 1 (Rearrangement Inequality). Let x⃗ and y⃗ be two
size n vectors whose entries are sorted non-increasingly.
Then, for every permutation σ of [n], it holds that∑

i∈[n]

min(xi, yi) ≥
∑
i∈[n]

min(xi, yσ(i)).

Proof. The proof works recursively as follows: Assume that
the smallest entry of y⃗ would not be in the last position n,
but in the position i∗. Consider two cases.

First, xn ≤ yi∗ . Since be definition yn ≥ yi∗ , swap-
ping yi∗ and yn cannot decrease the overall sum.

Second, xn > yi∗ . Then, also xi∗ > yi∗ (by x⃗ being
non-increasing). That is, swapping yi∗ and yn leads the the
minimum in position n to become yi∗ (the previous mini-
mum of position i∗). Yet, the minimum in position i∗ is now
at least min(yn, xi∗), which must be at least min(yi∗ , xn),
since yn ≥ yi∗ and xi∗ ≥ xn.

The last position is correct, that is, remove these entries
and recurse.

Proof of Proposition1. We first show the proof for the val-
uation distance. It is an adaption of the proof of Lemma 2
in the full version (arXiv:2205.00492 [cs.GT]) of Boehmer
et al. (2022).

Assume towards a contradiction that we have two alloca-
tions instances U and U ′ with dv(U,U

′) > 2n− 2n
m . Assume

w.l.g. that dv(U,U
′) =

∑
i∈[n],j∈[m]

∣∣ui,j − u′
i,j

∣∣. otherwise
we could permute rows and column (relabel the goods and
agents) of one of the allocation instances.

9While we reordered the matrix in between, this is just for ex-
position.
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Observe that

dv(U,U
′) =

∑
i∈[n],j∈[m]

∣∣ui,j − u′
i,j

∣∣
=

∑
i∈[n],j∈[m]

(
max(ui,j , u

′
i,j)−min(ui,j , u

′
i,j)
)

=
∑

i∈[n],j∈[m]

(ui,j + u′
i,j)− 2

∑
i∈[n],j∈[m]

min(ui,j , u
′
i,j)

=
∑
i∈[n]

2− 2
∑

i∈[n],j∈[m]]

min(ui,j , u
′
i,j)

= 2n− 2
∑

i∈[n],j∈[m]

min(ui,j , u
′
i,j). (2)

If dv(U,U
′) > 2n− 2n

m , then it must hold that:∑
i∈[n],j∈[m]]

min(ui,j , u
′
i,j) < n/m. (3)

For each permutation σ of [m], we have
dv(U,U

′) ≤
∑

i∈[n],j∈[m]

∣∣∣ui,j − u′
i,σ(j)

∣∣∣ (this be-
ing incorrect would violate our assumption that
dv(U,U

′) =
∑

i∈[n],j∈[m]

∣∣ui,j − u′
i,j

∣∣. Consequently,
for every permutation σ of [m], and reasoning analogously
to Eq. (2) and Eq. (3), we get∑

i∈[n],j∈[m]

min(ui,j , u
′
i,σ(j)) < n/m.

Observe that if x, y ∈ [0, 1], then it holds that x · y ≤
min(x, y). Since for each i ∈ [n] and , j ∈ [m], we have
ui,j , u

′
i,j ∈ [0, 1], for each each permutation σ of [m], it

holds that: ∑
i∈[n],j∈[m]

ui,j · u′
i,σ(j) < n/m. (4)

We define a family Ψ := {σ(k) | k ∈ [m]} of permuta-
tions by σ(k)(j) := (j + k − 1 mod m) + 1. By summing
up Eq. (4) (on both sides) for each permutation from Ψ we
obtain: ∑

σ∈Ψ

∑
i∈[n],j∈[m]

ui,j · u′
i,σ(j) < n/m · |Ψ|,

which can be rearranged to∑
i∈[n],j∈[m]

ui,j ·
∑
σ∈Ψ

(u′
i,σ(j)) < n/m · |Ψ|. (5)

Since
∑

j∈[m] ui,j =
∑

j∈[m] u
′
i,j = 1,∀i ∈ [n], it holds

that: ∑
σ∈Ψ

(u′
i,σ(j)) =

∑
k∈[m]

(u′
i,σ(k)(j)) =

∑
ℓ∈[m]

u′
i,ℓ = 1.

Hence (and with |Ψ| = m), from Eq. (5) we get∑
i∈[n],j∈[m]

ui,j < n,

which contradicts the fact that
∑

j∈[m] ui,j =∑
j∈[m] u

′
i,j = 1,∀i ∈ [n]. Hence, we have

dv(U,U
′) ≤ 2n− 2n

m .
To see that also dd(U,U

′) ≤ 2n − 2n
m , we upper-bound

dd(U,U
′) ≤ dv(U,U

′).
Assume towards a contradiction that the demand dis-

tance between two instances would be greater than the
valuation distance. Let V =

−−→
demU (1) · · ·

−−→
demU (m) and

V ′ =
−−→
demU ′(σ(1)) · · ·

−−→
demU ′(σ(m)) be the matrices re-

sulting from the column-wise concatenation of the demand
vectors of U and U ′, respectively, using some permutation σ
of the columns.

Recall Eq. (2). Since the demand distance is upper-
bounded by the entry-wise sum of ℓ1-distances between V
and V ′, the same reasoning as above holds. Thus,∑
i∈[n],j∈[m]

min(vi,j , v
′
i,j) <

∑
i∈[n],j∈[m]

min(ui,j , u
′
i,j), (6)

Note that, Eq. 6 holds for any column permutation used to
define V ′, so in partucular also when we use the same which
we used for the valuation distance. In other words, we can
assume that, up to permutation of the entries, U and V as
well as U ′ and V ′ have the same column vectors.

For Eq. 6 to hold, it would need to hold that∑
i∈[n]

min(vi,j∗ , v
′
i,j∗) <

∑
i∈[n]

min(ui,j∗ , u
′
i,j∗) (7)

for some column j∗ ∈ m. Due to the rearrange-
ment inequality (Lemma 1), however, we know that∑

i∈[n] min(vi,j∗ , v
′
i,j∗) ≥

∑
i∈[n] min(ui,j∗ , u

′
i,j∗); a con-

tradiction to Eq.7.

F Additional Experimental Results
In this section, we expand upon Sections 3.2 and 4.3 by
(i) presenting the remaining comparisons of the different
maps for the different features, (ii) introducing new features,
and (iii) disaggregating plots of the distributions of instance
sources.

A comparison of the distance-embedding and the explicit
map regarding the minimax envy, the maximum Nash wel-
fare, and the maximum utilitarian welfare for both the 3× 6
and 5× 5 instances can be seen in Figures 9, 10, and 11, re-
spectively; these show that the distance-embedding and ex-
plicit provide similar information regarding these features.

The same observation holds for some other features: Fig-
ure 12 shows whether an instance permits an envy-free
allocation—an information that can also be derived from
the minimax envy—, while Figure 13 shows whether an in-
stance allows an envy-free and Pareto-efficient allocation.
Interestingly, the maps of the two features look identical—
indeed they are for 5× 5, and only differ for 6 instances for
3× 6. We have also investigated whether an instance fulfills
the max-min fair share criterion, which requires each agent
to get a bundle with a utility no less than the maximum, over
all allocations, of the utility of the bundle that has the low-
est utility for the agent. We omit the corresponding maps, as
each instance of our two instance set satisfies this criterion.
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Furthermore, we consider the sum, over all agents, of the
maximal envies, i.e.

∑
i∈A maxi̸=i′ ui(Si′)−ui(Si), which

can be seen in Figure 14 and which shows a similar color
gradient to utilitarian welfare, but reversed: the sum of the
absolute envies (smoothly) decreases if an instance is closer
to separability.

While the previous features are based on allocations, we
also consider features that can be computed solely from the
utility matrix. Figure 15 and Figure 16 show the “maximum
demand” and “preference diversity”, respectively, which are
introduced in Section 4.1: These results support the correla-
tion between the features and the singular values mentioned
in the latter section. Figure 17 shows the fraction of agents
who are single-minded, i.e., value only one item: Roughly
half of the map is covered by instances in which at most
around 20% of the agents are single-minded.

In addition, we introduce the following measures: In order
to measure the diversity of demand we create a vector of all
total demands and compute a Gini coefficient of that vector,
where the demand for the good i is defined as

∑
a∈A ua(i).

On the other hand, we compute Gini coefficient of each vote
and take the average over all votes in order to measure the
pickiness. The maps showing these two features can be seen
in Figure 18 and Figure 19 (which shows one minus picki-
ness, because then the value is one for one extreme point and
zero for the other extreme points, which is also the case for
diversity of demand and preference diversity), which show
that these measures also vary smoothly over the map.

Lastly, we highlight each of the different instance sources
separately in Figures 20 to 26, which shows the observations
about the instances sources on the distance-embedding map
in Section 3.2 more clearly on both distance-embedding and
explicit maps, both of which show similar distributions.
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Figure 9: Distribution of the minimax envy on our distance-embedding (first and third from left) and explicit map (second and
fourth from left).
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Figure 10: Distribution of the maximal Nash welfare on our distance-embedding (first and third from left) and explicit map
(second and fourth from left). Brown stars represent the value 0 in the 5× 5 maps.
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Figure 11: Distribution of the maximum utilitarian welfare on our distance-embedding (first and third from left) and explicit
map (second and fourth from left).
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Figure 12: Distribution of whether an envy-free allocation exists on our distance-embedding (first and third from left) and
explicit map (second and fourth from left).
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Figure 13: Distribution of whether an envy-free and pareto efficient allocation exists on our distance-embedding (first and third
from left) and explicit map (second and fourth from left).
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Figure 14: Distribution of the sum of the maximal envies on our distance-embedding (first and third from left) and explicit map
(second and fourth from left).
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Figure 15: Distribution of the maximum demand on our distance-embedding (first and third from left) and explicit map (second
and fourth from left).
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Figure 16: Distribution of the preference diversity on our distance-embedding (first and third from left) and explicit map (second
and fourth from left).
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Figure 17: Distribution of the agents who are single-minded on our distance-embedding (first and third from left) and explicit
map (second and fourth from left).
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Figure 18: Distribution of the diversity of demand on our distance-embedding (first and third from left) and explicit map (second
and fourth from left).
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Figure 19: Distribution of one minus pickiness on our distance-embedding (first and third from left) and explicit map (second
and fourth from left).
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Figure 20: The instances from the euclidean distribution are marked as green dots, while all other instances are marked as brown
stars.
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Figure 21: The instances from the attributes distribution are marked as green dots, while all other instances are marked as brown
stars.
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Figure 22: The instances from the Dirichlet-Resampling distribution are marked as green dots, while all other instances are
marked as brown stars.
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Figure 23: The instances from the resampling distribution are marked as green dots, while all other instances are marked as
brown stars.

CON

IND SEP/BIC

WSEP(f)

(a) 3× 6

0.0 0.5 1.0
0.6

0.8

1.0

1.2

1.4

1.6

1.8 CON

IND

SEP/BIC

WSEP(f)

(b) 3× 6

CON

IND SEP

BIC

(c) 5× 5

0.0 0.5 1.0 1.5

1.0

1.2

1.4

1.6

1.8

2.0

2.2 CON

IND SEP

BIC

(d) 5× 5

Figure 24: The instances from the Spliddit dataset are marked as green dots, while all other instances are marked as brown stars
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Figure 25: The instances from the island dataset are marked as green dots, while all other instances are marked as brown stars.
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Figure 26: The instances from the candies dataset are marked as green dots, while all other instances are marked as brown stars.
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