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Traditionally, social choice theory has only been applicable to choices among
a few predetermined alternatives but not to more complex decisions such as
collectively selecting a textual statement. We introduce generative social choice, a
framework that combines the mathematical rigor of social choice theory with the
capability of large language models to generate text and extrapolate preferences.
This framework divides the design of AI-augmented democratic processes into
two components: first, proving that the process satisfies rigorous representation
guarantees when given access to oracle queries; second, empirically validating that
these queries can be approximately implemented using a large language model.
We apply this framework to the problem of generating a slate of statements that
is representative of opinions expressed as free-form text; specifically, we develop a
democratic process with representation guarantees and use this process to represent
the opinions of participants in a survey about chatbot personalization. We find
that 93 out of 100 participants feel “mostly” or “perfectly” represented by the
slate of five statements we extracted.

1. Introduction
Social choice theory is the field of mathematics, economics, and political science that studies
the aggregation of individual preferences towards collective decisions. The typical social choice
setting involves a small, predetermined set of alternatives (such as candidates in an election)
and a set of participants who specify their preferences regarding these alternatives, often in
the form of rankings.

When democratic input is sought for more nuanced decisions, however, the process may not
fit into this neat template. Citizens’ assemblies, for example, provide policy recommendations
to governments on complex issues, such as climate change and constitutional reform [Flanigan
et al., 2021]. In response to the rapid progress of generative AI in recent years, a number
of companies, for instance Meta [Clegg, 2023] and OpenAI [Zaremba et al., 2023], are
experimenting with democratic processes for AI value alignment, with open-ended questions
such as “how far [. . . ] personalization of AI assistants like ChatGPT to align with a user’s
tastes and preferences should go?”

These developments motivate us to introduce a new paradigm for the design of democratic
processes: generative social choice. It fuses the rigor of social choice theory with the flexibility
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and power of generative AI, in particular large language models (LLMs), to facilitate collective
decisions on complex issues in a principled way.

How LLMs address the limitations of classical social choice. In our view, there are two
fundamental obstacles to using classical social choice to answer open-ended questions, both of
which can be circumvented by LLMs.

• Unforeseen Alternatives. In classical social choice, the set of alternatives is explicitly specified
and static. Take the 2016 Brexit referendum, for example, in which the alternatives were
either to maintain the status quo or make a clean break with the European Union. Since
intermediate options were not specified, they could not be selected by voters, even if they
might have enjoyed a much larger degree of support. Even in participatory budgeting [Ca-
bannes, 2004], the set of alternatives is limited to the budget-feasible subsets of previously
proposed projects.
By contrast, LLMs have the capability of generating alternatives that were not initially an-
ticipated but find common ground between participants. In principle, the possible outcomes
of an LLM-augmented democratic process may span the universe of all relevant outcomes
for the problem at hand, e.g., all possible bills or statements.

• Extrapolating Preferences. In classical social choice theory, agents specify their preferences
in a rigid format. Typically, agents evaluate each alternative independently, or, if the
alternatives form a combinatorial domain,1 a voting rule might assume that preferences
have a restricted parametric shape, and only elicit its parameters. This approach clearly
does not suffice if a democratic process may produce alternatives that were not previously
anticipated, and therefore not elicited: to even know which alternatives would be promising
to generate, the process must be able to extrapolate participants’ preferences.
LLMs can address this problem by allowing participants to implicitly specify their preferences
by expressing their opinions, values, or criteria in natural language. The LLM can act as a
proxy for the participant, predicting their preferences over any alternative, whether foreseen
or newly generated.

A framework for generative social choice. It is clear, at this point, what LLMs can
contribute to social choice. LLMs and social choice theory make an odd couple, however,
because social choice focuses on rigorous guarantees whereas LLMs are notoriously impervious
to theoretical analysis. We propose a framework for generative social choice that addresses
this difficulty by breaking the design of democratic processes into two interacting components.

• First component: Guarantees with perfect queries. Assume that the LLM is an oracle that
can precisely answer certain types of queries, which may involve generating new alternatives
in an optimal way or predicting agents’ preferences. Once appropriate queries have been
identified, the task is to design algorithms that, when given access to an oracle for these
queries, provide social choice guarantees.

• Second component: Empirical validation of queries. Assuming the LLM to be a perfect
oracle is helpful for guiding the design of a democratic process, but of course not an accurate
reflection of reality. In the second component, the task is to implement the proposed queries

1This is the case, for example, in multi-winner elections or participatory budgeting.
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using calls to LLMs, and to empirically validate how well these implementations match the
queries.

Naturally, the two components interact: The theory identifies queries that are useful for social
choice and should hence be validated empirically. Conversely, experiments show which queries
can be answered accurately in practice, raising the question of which guarantees algorithms
relying on these queries might provide.

A key benefit of this framework is that theoretical results derived in it are future-proof: as
LLMs continue to rapidly improve, they will only grow more reliable in answering queries,
making the LLM-based aggregation methods ever more powerful.

Our results: A case study in generative social choice. In addition to introducing the
framework presented above, we demonstrate it in one particular setting: summarizing a large
body of free-form opinions into a slate of few statements, in a representative manner. In this
setting, participants share free-form opinions about a given policy issue on an online platform
such as Polis [Small et al., 2021] or Remesh,2 or as part of a qualitative survey. Then, a voting
rule selects a slate of k statements that is proportionally representative of the diversity and
relative prevalence of viewpoints among the participant population.

The setting of statement selection was formalized by Halpern et al. [2023] in the language of
multi-winner approval elections: If we think of statements as candidates, and of an agreement
between participants and statements as binary approval votes, the slate should satisfy axioms
for proportional representation from this literature such as justified representation (JR). In our
work, we allow cardinal (rather than just binary) levels of participant–statement agreement.
Furthermore, we introduce a novel strengthening of JR, balanced justified representation
(BJR), which we believe to be particularly well suited for our statement-selection application
and of independent interest.

Whereas previous summarization systems can only select a slate among users’ statements,
our process can generate new statements, which might find new common ground between
participants and allow for more representative slates. Our process takes as input each user’s
interactions on the platform as a description of their preferences. The process then employs
an LLM to (1) translate these descriptions to participants’ utilities for any new statements
(discriminative queries, in the language of machine learning), and (2) generate statements
that maximize the utility of a subset of participants, based on their descriptions (generative
queries).

Following our framework’s first component, we show that, with access to polynomially many
of these queries, a democratic process resembling Greedy Approval Voting [Aziz et al., 2017]
guarantees BJR. Crucially, this guarantee holds not just relative to a set of predetermined
statements but to the space of all possible statements (Section 3.1).

A potential issue with this process is that, through the generative query, it calls the
LLM with a prompt whose length scales linearly in the number of participants. This is
problematic since LLMs can only handle input of bounded length. We show that, unless
one makes assumptions regarding the structure of preferences, this problem of linear-size
queries is unavoidable for any process guaranteeing BJR with subexponentially many queries
(Section 3.2). If, however, the space of statements and preferences is structured, specifically,

2https://www.remesh.ai/
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if it has finite VC dimension [Vapnik, 1998], democratic processes based on sampling can
guarantee BJR (with high probability) using a polynomial number of queries whose length is
independent of the number of participants (Section 3.3).

In Section 4, we present a practical, LLM-based implementation of discriminative and
generative queries. Empirical validation shows that the proposed implementation of the
discriminative query is indeed able to accurately extrapolate agents’ preferences to unseen
statements. Further, we show that the proposed implementation of the generative query
consistently produces high-agreement statements by leveraging the complementarity of different
LLM-based generation methods.

Equipped with these query implementations, we then deploy the full democratic process
in Section 5. As part of OpenAI’s grant program for Democratic Inputs to AI, we pilot our
process to study US residents’ opinions on the extent to which chatbots should be personalized.
We elicit free-text opinions about this topic from a sample of 100 participants and distill
them into a representative slate of five statements, using our LLM-enhanced democratic
process. These statements surface three major concerns that US residents have about chatbot
personalization: privacy and data security, user control, and truthfulness. To validate that
these statements faithfully represent the population, we conduct a second survey with a fresh
sample of 100 US residents. We find that that 93% of participants indicate that a statement
in our slate captures their opinion on chatbot personalization “mostly” (18%) or “perfectly”
(75%). To support future research on online participation, we make the participants’ full
responses available as a public data set.

Related work. In a recent position paper that is independent of our work, Small et al. [2023]
discuss the opportunities and risks of LLMs in the context of Polis. The opportunities they
identify include topic modeling, summarization, moderation, comment routing, identifying
consensus, and vote prediction. Most relevant to us are their experiments for the vote prediction
task, which is closely related to our implementation and evaluation of discriminative queries. In
the future, our democratic process as a whole could serve in the summarization role envisioned
by Small et al. [2023], for which they do not propose specific algorithms and perform no
systematic experiments.

Our discriminative queries using LLMs are also related to work by Konya et al. [2022],
who integrate an LLM with a latent factor model to predict preferences. More broadly,
the paradigm of virtual democracy facilitates automated decisions on ethical dilemmas by
learning the preferences of stakeholders and, at runtime, predicting their preferences over the
current alternatives and aggregating the predicted preferences; example papers, which employ
classical machine-learning algorithms, apply the paradigm to domains such as autonomous
vehicles [Noothigattu et al., 2018], food rescue [Lee et al., 2019], and kidney exchange [Freedman
et al., 2020]. These papers all aim to predict preferences on a fixed set of alternatives — they
do not generate new alternatives.

A source of inspiration for our work is the paper of Bakker et al. [2022]. They fine-tune
an LLM to generate a single consensus statement for a specific group of people, based on
written opinions and ratings of candidate statements. Reward models are trained to capture
individual preferences, and the acceptability of a statement for the group is measured through
a social welfare function. One difference from our work is that we do not attempt to find a
single statement that builds consensus across the entire group — we instead allow for multiple
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statements representing distinct opinions. A more fundamental difference is that we view our
experiments as an instance of a broader framework that allows for a systematic investigation
of the types of queries an LLM can perform and the theoretical guarantees they provide.

Finally, we build on the rich literature on justified representation in approval-based com-
mittee elections [Aziz et al., 2017]. As we have already mentioned, Halpern et al. [2023] also
study representation axioms from this literature in a statement-selection context. The key
technical challenge in their work is that they only have access to partial approval votes. The
learning-theoretic approach they adopt, as well as a later refinement by Brill and Peters [2023],
bears technical similarity to the algorithm we propose for obtaining representation with size-
constrained generative queries. All previous papers in this literature assume a non-generative
setting with a fixed set of alternatives.

2. Model
Let N be a set of n agents, and let U denote the universe of (well-formed, on-topic) statements,
which may be finite or infinite. Each agent i ∈ N has a utility function ui : U → R that
maps statements to utilities. Whereas our positive results apply for arbitrary real-valued
utility functions, our impossibilities will even hold in the restricted setting of approval utilities,
where utilities are 0 or 1, which much of the prior work has focused on. An instance of the
statement-selection problem consists of N , U , {ui}i∈N , and a slate size k ∈ N≥1.

A democratic process is an algorithm that, when run on an instance, returns a slate, i.e., a
multiset consisting of k statements from the universe.3 Crucially, this algorithm receives only
N and k in its input, but not U or the ui, which it must instead access through queries as we
describe below.

For convenience, we denote the rth largest element in a finite set X of real numbers (for
1 ≤ r ≤ |X|) by max(r)(X). To deal with edge cases, we set max(0)(X) =∞ for all sets X.

2.1. Queries
Since the democratic process does not receive the statements and preferences in its input, it
instead accesses them indirectly through queries. The democratic processes we develop make
use of two query types:

Discriminative Queries. Discriminative queries extrapolate an agent’s utility function to
unseen statements. For an agent i and statement α, Disc(i, α) returns ui(α).

Generative Queries. For a set of agents S of size at most t and an integer 0 ≤ r ≤ |S|,
t-Gen(S, r) returns the statement in U that maximizes the r-highest utility among the
members of S. Formally, the query returns

argmax
α∈U

max(r)
(
{ui(α) | i ∈ S}

)
, (1)

3Allowing a slate to contain the same statements multiple times avoids technical problems with the edge case
where generative queries return the same statement, in which case no query-based algorithm would be able
to procure k distinct statements. We also believe this choice to be suitable for our application domain,
where representing multiple segments of the population by identical statements might be appropriate in
certain cases, for example if all agents in these segments have identical preferences. For ease of exposition,
we will slightly abuse notation and treat slates as if they were sets; essentially assuming that different
generative queries do not return exactly the same statement.
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breaking ties arbitrarily.

Intuitively, the generative query’s parameter r interpolates between finding a lowest common
denominator (t-Gen(S, |S|) maximizes the minimum utility over S) and finding a statement
that precisely matches a narrow coalition in S (e.g., t-Gen(S, 1) gives some agent maximum
utility, but might be unpopular among the remaining agents). For convenience, we will simply
write Gen(·, ·) to refer to generative queries without a size limit or to talk generally about
generative queries with different size limits t.

2.2. Representation Axiom
The aim of our democratic processes is to produce a slate of statements W that is representative
of the agent population. If agents have approval utilities, statement selection reduces to the
classic setting of multi-winner approval voting. Therefore, our target axiom is inspired by the
family of justified representation axioms [Aziz et al., 2017] in this literature:

Definition 1. A slate W satisfies balanced justified representation (BJR) if there is a function
ω : N →W matching agents to statements in a balanced way,4 such that there is no coalition
S ⊆ N , statement α ∈ U , and threshold θ ∈ R such that (i) |S| ≥ n/k, (ii) ui(α) ≥ θ for all
i ∈ S, and (iii) ui(ω(i)) < θ for all i ∈ S.5

In words, if there is a coalition of agents that is (i) large enough to “deserve” a statement
on the slate by proportionality and (ii) has cohesive preferences (i.e., there is a statement for
which all these agents have utility at least θ), then (iii) the coalition must not be “ignored”,
in the sense that at least one member must be assigned to a statement with utility at least θ.

Our notion of BJR is closely related to several axioms in the social choice literature.6
Suppose for the time being that we were to relax BJR by not requiring the matching of
agents to statements to be balanced, in which case, each agent would be matched to their
most preferred statement without loss of generality. In the subsetting of approval utilities,
this relaxed axiom coincides with the justified representation (JR) axiom of Aziz et al. [2017].
For our setting of general cardinal utilities, the relaxed axiom is implied by extended justified
representation (EJR) and full justified representation (FJR) as defined by Peters et al. [2021].

The need for a new, balanced-matching-based notion of justified representation is best
explained using two simple examples. The first example, given in Table 1, is standard: k = 3
statements must be selected, two thirds of the agents (specifically, agents 1 and 2) approve
statements α, α′, and the remaining third of the agents (agent 3) approves statements β, β′. As
has been frequently observed [e.g., Aziz et al., 2017, Example 3], JR (and thus the relaxation
of BJR with unbalanced matchings) is satisfied by the slate {α, β, β′}. This is problematic
since this slate is patently unproportional: it represents two thirds of the population by one
third of the slate, and vice versa.

4That is, each statement on the slate is matched to ⌊n/k⌋ or ⌈n/k⌉ agents.
5This axiom can also be defined in a setting where slates are sets of statements, rather than multisets. In

this case, the statements α are restricted to lie in U \ W , to make the axiom satisfiable. This axiom can
be satisfied by a variant of Process 1, in which the choice of statements in each iteration is restricted to
statements that have not previously been selected.

6Note that we defined slates as multisets, whereas these axioms typically define committees as sets. The
discussion in this section is both valid if one translates the multi-winner axioms into the multiset setting, or
by using the set variant of BJR, which we described in Footnote 5.
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Table 1: Utility matrix of first example in-
stance, with k = n = 3.

α α′ β β′

u1 1 1 0 0
u2 1 1 0 0
u3 0 0 1 1

Table 2: Utility matrix of second example
instance, with k = n = 2.

α1 α2 β β′

u1 3 0 2 2
u2 0 3 2 2

JR cannot rule out this form of unproportionality because each member of the two-thirds
bloc is already represented by some statement they approve, and JR does not allow agents
and coalitions to formulate any claims to representation beyond that point. Axioms like EJR
and FJR allow coalitions to make stronger claims than JR by assuming that an agent (say,
agent 1 in the previous example) may prefer to be represented by multiple statements rather
than just one. Specifically, these axioms model an agent’s utility as being the sum of their
utilities for all statements on the slate.

Though this approach allows EJR and FJR to rule out the unproportional slates in the
first example, it causes them to require slates on other instances that we find undesirable for
the setting of statement selection, especially in a setting of non-approval utilities. Table 2
shows one such instance, in which two statements must be selected for two agents. Each agent
i ∈ {1, 2} has a statement αi which is very specific to i and thus has a high utility for i but
low utility for the other agent. In this instance, we believe that a slate consisting of these two
statements would be a good choice since it represents the specificity of agents’ preferences
to the highest degree; indeed, only this slate satisfies BJR. EJR and FJR, by contrast, rule
out these statements, since they prefer to represent both agents jointly by two less specific
statements (namely, β, β′) rather than each agent individually by a specific statement.7

Our axiom of BJR enforces more specificity on the second instance, while ruling out
the unproportional slates on the first example instance. Instead of allowing a single agent
to be represented by multiple statements, BJR’s analysis of the shortcoming of JR in the
first example is that too many agents were represented by a single statement on the slate.
Philosophically, we see connections between our axiom and the notion of fully proportional
representation of Monroe [1995]: “voters should be segmented into equal-sized coalitions, each
of which is assigned a representative, such that the preferences of voters are as closely as
possible reflected by the representatives of their segment.” In Appendix A, we show that
BJR, other than implying JR, is incomparable to previously studied notions of justified
representation,8 even in the setting of approval utilities. Throughout this paper, we will aim
to build democratic processes that satisfy BJR, even when the universe of statements is very
large and can only be navigated through queries.

3. First Component: Guarantees with Perfect Queries
In this section, we instantiate the first component of the generative social choice framework.

7One might hope that EJR and FJR can be adapted to this perspective, by extending utilities to sets in
a unit-demand rather than additive way. With this modification, however, they no longer rule out the
unproportional slate in the first example instance.

8Specifically, Proportional Justified Representation (PJR), EJR, FJR, and core stability.
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3.1. Unconstrained Queries
We begin by constructing a democratic process that guarantees BJR in polynomial time.
This algorithm uses queries of type Disc(·, ·) and n-Gen(·, ·), i.e., generative queries without
constraints on the number of input agents. The democratic process we propose, shown in
Process 1, can either be seen as a generalization of Greedy Approval Voting [Aziz et al., 2017],
or as a variant of Greedy Monroe Rule [Skowron et al., 2015] that selects statements following
an egalitarian rather than utilitarian criterion. Our democratic process iteratively constructs
a slate, adding statements one at a time. In each iteration, it identifies a set T of n/k (up to
rounding) remaining agents and a statement α such that mini∈T ui(α) is maximized. It then
adds α to the slate, removes the agents T (who are now satisfied), and repeats. The proof
below that this process satisfies BJR follows the argument by Aziz et al. [2017] that Greedy
Approval Voting satisfies JR.

Process 1: Democratic Process for Balanced Justified Representation
1 Inputs: agents N , slate size k
2 r̄ ← n 1

k
3 S ← N
4 W ← ∅
5 for j = 1, 2, . . . , k do
6 α← Gen(S, ⌈r̄⌉)
7 W ←W ∪ {α}

8 r ←
{
⌈r̄⌉ if j ≤ n− k · ⌊r̄⌋
⌊r̄⌋ else

9 T ← the r agents in S with largest Disc(·, α)
10 S ← S \ T

11 return W

Theorem 2. Process 1 satisfies balanced justified representation in polynomial time in n and
k, using queries of types n-Gen(·, ·) and Disc(·, ·).

Proof. In this proof, we will use αj , Tj to denote the values of α and T assigned in a given
iteration 1 ≤ j ≤ k. We construct the matching ω by, for each round j = 1, . . . , k, mapping
all agents that were removed from S in that round to the statement that was added to W
in that round, i.e. for all i ∈ Tj we have ω(i) = αj . Clearly, this matching is balanced, since
either ⌊n/k⌋ or ⌈n/k⌉ agents are removed in each round.

Now consider a coalition S′ ⊆ N , a statement α′ ∈ U , and a threshold θ ∈ R such that
|S′| ≥ n/k (and, by integrality, |S′| ≥ ⌈n/k⌉) and ui(α′) ≥ θ for all i ∈ S′. Once Process 1
terminates we have S = ∅, hence there must be an earliest iteration j where some agent i′ ∈ S′

appeared in Tj . At the beginning of iteration j of the loop, it must thus still hold that S′ ⊆ S.
Note that

max(⌈r̄⌉)({ui(α′) | i ∈ S}) = max(⌈n/k⌉)({ui(α′) | i ∈ S}) ≥ max(|S′|)({ui(α′) | i ∈ S})
≥ max(|S′|)({ui(α′) | i ∈ S′}) ≥ θ.
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Thus, since i′ ∈ Tj and by the definition of the generative query (Eq. (1)), it must hold that

ui′(ω(i′)) = ui′(αj) ≥ max(⌈r̄⌉)({ui(αj) | i ∈ S}) ≥ θ.

We conclude that S′, α′, θ do not violate BJR.

3.2. Size-Constrained Generative Queries
So far, our generative queries could generate optimal statements even if the queried set S of
agents was as large as n. When implementing a generative query using an LLM, however, the
prompt to the LLM must include, for each agent in S, enough information to extrapolate
the agent’s preference across the universe of statements. Since this information can easily
take hundreds of tokens per agent in S, the context windows of current LLMs (GPT-4 and
PaLM: 8K tokens, LLaMA: 4K tokens) limits the size of S. Even recent models with extended
context windows (GPT-4-32k: 32K tokens, GPT-4-turbo: 128K tokens, Claude 2: 100K tokens)
struggle to effectively use the entirety of their context window [Liu et al., 2023]. As a result,
democratic processes might for now be restricted to generative queries for moderate |S|.
Therefore, we investigate in this section whether democratic processes can still ensure BJR
when generative queries are limited to sets of agents of some size t, substantially smaller than
n. Immediately, we see that, if the query size t is a bit smaller than n/k, representation cannot
be attained:

Proposition 3. No democratic process can guarantee balanced justified representation with
arbitrarily many n/k (1− 1/k)-Gen(·, ·) and Disc(·, ·) queries. This impossibility even holds
in the subsetting of approval utilities and for the weaker axiom of justified representation.

Conceptually, the proof of this theorem and the subsequent impossibility theorem are based
on the idea of overshadowing. Specifically, we construct instances that have few “popular”
statements and many “unpopular” statements with lower support. For a given set S of at
most t agents, our instances will ensure that some unpopular statement will be at least
as well liked within S as any popular statement. Thus, all generative queries might return
unpopular statements, and we design the instance such that no slate composed entirel of
unpopular statements is representative. We now apply this idea in a straightforward way to
prove Proposition 3.

Proof. Set t := n/k (1− 1/k). Let n be some multiple of k2, so that t is an integer. Suppose
that there is one “popular” statement α, which has utility 1 for all agents. Furthermore, for
each set S of at most t agents, let there be an “unpopular” statement with utility 1 for S and
0 for all other agents. This unpopular statement is a valid answer for any query of the shape
t-Gen(S, ·), because the r-th largest utility among S for this statement is 1, the maximum
possible utility of this instance. Thus, with the right tie breaking, one can implement all
t-Gen(·, ·) queries to return unpopular statements, from which it follows that the process will
have to return a slate W entirely of unpopular comments.

Since each unpopular statement has positive utility for at most t agents, at most k · t =
n (1− 1/k) = n−n/k agents receive positive utility from any statement in W . In other words,
n/k agents have utility 0 for all statements in W , but have utility 1 for the popular statement
α. This demonstrates a violation of (balanced) justified representation.
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On the face of it, slightly larger size-constrained generative queries seem promising for
achieving BJR, since there is a democratic process that achieves BJR with queries of size
t = ⌈n/k⌉. Indeed, observe that, for any S and r,

Gen(S, r) = argmax
α∈U

max(r)
(
{ui(α) | i ∈ S}

)
= argmax

α∈U
max
S′⊆S
|S′|=r

max(r)
(
{ui(α) | i ∈ S′}

)
= argmax

α∈
{

Gen(S′,r)
∣∣ S′⊆S,|S′|=r

} max(r)
(
{ui(α) | i ∈ S}

)
,

which shows that any call to Gen(S, r) can be simulated by (exponentially many) r-Gen(·, ·)
queries and discriminative queries. By applying this simulation to Process 1, in which all
generative queries satisfy r ≤ ⌈n/k⌉, Theorem 2 immediately implies that BJR can be
implemented by ⌈n/k⌉-Gen(·, ·) queries, though the time complexity of the modified process
is obviously prohibitive.

Proposition 4. There exists a democratic process that satisfies balanced justified representation
using (exponentially many) queries of type ⌈n/k⌉-Gen(·, ·) and Disc(·, ·).

Unfortunately, the exponential running time of this naïve democratic process turns out to be
unavoidable, even if the generative queries can have linear size in n. Our proof must necessarily
be more complicated than our previous impossibility in Proposition 3, in which we constructed
an explicit instance on which any democratic process with t-bounded generative queries had
to violate representation. A more sophisticated proof is necessary since, for any instance, there
exists a democratic process that satisfies BJR in polynomial time on this instance; namely, a
variant of the algorithm from Proposition 4 that guesses the right subset S′ and returns the
corresponding statement Gen(S, r). We prove our impossibility (in Appendix B) by showing
that, for any fixed polynomial-time algorithm, there exists an instance on which this algorithm
violates BJR, through an application of the probabilistic method.

Theorem 5. No democratic process can guarantee balanced justified representation with any
number of Disc(·, ·) queries and fewer than 2

k en/(12k) queries of type n
8 -Gen(·, ·). This holds

even for the subsetting of approval utilities and the weaker axiom of justified representation. As
a corollary, if k ∈ O(n0.99), then any democratic process guaranteeing BJR with n

8 -Gen(·, ·)
and Disc(·, ·) queries has exponential running time.

3.3. Structured Preference Settings
While the last section’s lower bounds are potentially worrisome, a silver lining is that the
instances we used to prove them were contrived. Our impossibility proofs were constructed by
drowning popular statements in an overwhelming number of relatively unpopular statements:
for any set of agents (of a given size), there was a statement that was well liked by only
these agents and not by any other agent. Since statements and preferences in the real world
presumably have some structure, it seems highly implausible that such an abundance of
orthogonal statements would exist for real-world populations. Note that, by “structure” we
are not referring to any fixed geometry of alternatives (in contrast to, say, spatial models of
voting). Instead, we only require that preferences do not have infinite “complexity”.

To formally define this complexity, we introduce the notion of a statement space (U ,F),
which consists of a universe of statements U and a set of possible utility functions F ⊆ RU . A
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statement-selection instance belongs to (U ,F) if its universe of statements is U and if each
agent i’s utility function ui appears in F .

To measure the complexity of a statement space, we borrow a fundamental complexity
notion from learning theory, the VC-dimension (see, e.g., Vapnik 1998). We extend the
definition of VC-dimension to statement spaces in a natural way: The VC-dimension of (U ,F)
is the largest d ∈ N, for which there exist u1, u2, . . . , ud ∈ F such that, for any index set
I ⊆ {1, . . . , d}, there is a statement α ∈ U and threshold θ ∈ R such that ui(α) ≥ θ for all
i ∈ I and ui(α) < θ for all i /∈ I. If no largest integer d exists, the VC-dimension is infinite.
In other words, d is the size of the largest set of participants, such that for any subset of
participants there is a statement that has a utility above some threshold for this subset and
none of the agents outside of this subset.

This notion of VC-dimension of a statement space (U ,F) is identical to the classic, learning-
theoretic VC-dimension of a hypothesis set H, constructed as follows. We define a family of
functions hα,θ that map the utility functions u ∈ F to binary labels as follows:

hα,θ(u) :=
{

1 if u(α) ≥ θ

0 else

That is, hα,θ(u) indicates whether an agent with utility function u assigns a utility of θ or
larger to a statement α. Then, the VC-dimension d of a statement space (U ,F) is identical to
the classic, learning-theoretic VC-dimension of the hypothesis set H := {hα,θ |α ∈ U , θ ∈ R},
consisting of binary classifiers over F .

It seems unlikely that d would be huge in real-world settings, as it would imply, for instance
(assuming a one-dimensional simplification), that we could find a statement such that people
that lie at opposite sides of the space of opinions all support that statement, while people
that lie in the middle disagree with it. If, hence, the VC-dimension of the statement space is
finite in realistic settings, we can obtain BJR even with size-constrained generative queries, as
formalized by the following theorem.

Theorem 6. Let d be the VC-dimension of the statement space and δ > 0 the maximum
admissible error probability. Then, Process 2 runs in polynomial time in n, k (independent of
d) and satisfies BJR with probability at least 1− δ using the following queries: Disc(·, ·) and
t-Gen(·, ·) with t = O

(
k4(d+log k

δ )
)
.

The proof of this theorem can be found in Appendix B. The process that achieves this
result, Process 2, is an adaptation of Process 1. The key difference (Lines 9 to 11) is that
here we run Gen(Y, ·) on a random subset Y ⊆ N of the agents. Importantly, the size of this
subset does not grow with the total number of agents n.

To illustrate the power of this theorem with a simple example, suppose that opinions on
a discussion topic vary along three dimensions, say socially conservative vs. liberal, fiscally
conservative vs. liberal, and religious vs. secular. Suppose furthermore that agents and
statements can be represented as points in this three-dimensional space, such that the utility
ui(α) is a (strictly monotonically decreasing) function of the Euclidean distance between the
agent i and statement α in this space. Then, the hypothesis set H (as introduced above) of this
statement space is just the set of all spheres in R3, which is well known to have VC-dimension
d = 4 [e.g., Blum et al., 2020, p. 122]. Hence, Process 2 produces BJR slates (up to a failure
probability below 10−6) using t-Gen(·, ·) queries with t ≤ const · k4 (4 + log(k) + 6 · log(10)).
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Process 2: Democratic Process for BJR with Size-Constrained Queries.
(differences with Process 1 are highlighted in color)

1 Inputs: agents N , slate size k, VC-dimension d, error probability δ
2 nx ← O

(
k4 (d + log(k/δ))

)
3 ϵ← 1

4k2

4 r̄x ← nx

(
1
k − ϵ

)
5 r̄ ← n

(
1
k − 2ϵ

)
6 S ← N
7 W ← ∅
8 for j = 1, 2, . . . , k do
9 X ← draw nx agents from N without replacement

10 Y ← X ∩ S

11 α←
{

Gen(Y, ⌈r̄x⌉) if |Y | ≥ r̄x

some arbitrary α ∈ U else
12 W ←W ∪ {α}

13 r ←
{
⌈r̄⌉ if j ≤ n− k ⌊r̄⌋
⌊r̄⌋ else

14 T ← the r agents in S with largest Disc(·, α)
15 S ← S \ T

16 return W

If n is large, this t is much smaller than the lower bounds on t implied by Proposition 3
and Theorem 5 when we assume an unstructured statement space.

Importantly, Theorem 6 extends to far more complicated preference structures, and it does
not require the structure to be known, but only (an upper bound on) the VC-dimension. If,
for example, the set of statements U consists of all sequences of w many words in English
(which has below 106 words), a naive upper bound on the VC-dimension of the statement
space is d ≤ log2(|U|) ≤ w log2(106). Thus, t ≤ const · k4(w + log(k)) suffices to virtually
guarantee BJR.

In summary, despite the negative worst-case results from Section 3.2, it is highly likely
that relevant statement spaces in reality have enough structure to allow for a BJR guarantee
with high probability and a relatively small number of queries, which is independent of the
number of agents n. This means that we can scale the democratic process to any number
of participants, say to a national audience, even when using an LLM with bounded context
window size.

4. Second Component: Empirical Validation of Queries
We established in the previous section that, with access to perfect generative and discriminative
queries, we can guarantee BJR. In this section, we describe how we implement these queries as
subprocedures interfacing with an LLM, and we empirically study how well our implementations
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approximate the idealized queries. In Section 5, we then discuss a pilot evaluating the entire
democratic process, consisting of Process 1 and the query implementations described in the
present section.

Evaluation Data. To evaluate the query implementations, we use the data collected in
our pilot study on chatbot personalization, which we discuss in detail in Section 5. The
dataset consists of survey responses by a representative sample of 100 US residents. Each
participant extensively describes their views on chatbot personalization in free-form responses
to multiple questions. Furthermore, each participant rates six example statements. Each
statement consists of a concrete rule for chatbot personalization, a brief justification for the
rule’s importance, and an example illustrating the rule.9 We elicited these ratings by asking
participants “to what extent does this statement capture your full opinion regarding chatbot
personalization?” Participants were then asked to choose a rating on a 5-point scale (with the
levels “not at all” (0), “poorly” (1), “somewhat” (2), “mostly” (3), and “perfectly” (4)) and
to give a short free-text response to explain their rating. We equate ratings with utilities, e.g.
an agent i rating a statement α with “mostly” means that ui(α) = 3.10

4.1. Discriminative Queries
Here, we represent agents (participants) by their survey responses, hence our implementation
of the discriminative query Disc(i, α) takes as input agent i’s responses and a statement α,
and outputs a prediction of the rating ui(α). We implement these queries with a single call
to GPT-4’s base model, which has not been fine-tuned using Reinforcement Learning from
Human Feedback (RLHF) [Ouyang et al., 2022].11

The prompt text is constructed as follows: It starts with the participant’s free-form survey
responses. Then, as few-shot examples, we list the example statements, each followed by the
participant’s rating and free-text explanations. At the end of the prompt, we append the
statement α, such that, given the previous few-shot examples, the natural next token would
be the agent’s rating for α (see Appendix D for more details on the prompt). Hence, we can
interpret GPT-4’s prediction of the next token as an estimate of ui(α). Since the GPT-4 base
model allows for access to token probabilities, we can construct a probability distribution
capturing the model’s uncertainty about ui(α). In our implementation of Disc(i, α) we return
the expected ui(α) (between 0 and 4), which will be used in our algorithms. Note that by
default, GPT would return a sample drawn from that distribution instead. An important
advantage of using the expected rating is that this virtually eliminates the possibility of ties
when Process 1 chooses which agents to remove from consideration.

To evaluate this implementation of the discriminative query, we study how well it predicts
a participant’s rating of an example statement when the other five example statements are
included in the prompt. Figure 1 displays the result of this analysis, for all 100 participants

9For examples of such statements, see Section 5.2.
10Note, however, that the choice of numerical values is largely inconsequential as Process 1 is invariant to

monotone transformations of the rating scale.
11We primarily use the base model, rather than the RLHF model since, at the time of our experiments, OpenAI

did not provide access to log-probabilities for its RLHF model. Moreover, Santurkar et al. [2023] found that
RLHF models are more biased towards the opinions of certain subdemographics than corresponding base
models, which might cause discriminative queries implemented using RLHF models to systematically skew
towards certain viewpoints.
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and all 6 choices of held-out statement (hence a total of 600 datapoints). Specifically, both
subfigures compare the actual agreement rating given by the participant (row) with the
predicted ratings (column) produced by GPT-4. The subfigures differ in that Figure 1a shows
the average distributions, whereas Figure 1b gives a histogram when these distributions are
collapsed to their expected values.

The pronounced diagonal in Figure 1a indicates that the generated rating distributions
concentrate around the true rating. Predictions are typically within one step of the true rating,
and there is no clear bias.

Since our implementation of the discriminative query returns only the expected value of these
distributions, Figure 1b relates more directly to the performance of our democratic process.
Again, there appears to be a clear linear relationship between true ratings and predictions.
However, there appears to be a bias towards non-extreme ratings. This is not surprising, since,
for example, a statement with a ground-truth rating of 4 (“perfectly”) can be under- but not
overestimated. Fortunately, Process 1 is unaffected by monotone transformations of the rating
scale. Hence, all we need for our democratic process to work is that there be a monotone
relation between the true rating and the output of Disc(·, ·), which appears to be the case
from Figure 1b, up to some noise.

These results suggest that our LLM-based implementation of the discriminative query
successfully extrapolates participants’ preferences to new statements. This implementation
provides a good approximation to the idealized Disc(·, ·) and we will hence use it in our
democratic process.
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Figure 1: Confusion matrix of discriminative queries, with normalized row-sums. Both figures
represent the same 600 predicted rating distributions (100 participants times 6 choices
of held-out statement). These 600 predicted distributions are partitioned according
to the associated ground-truth participant rating, each partition corresponding to
a row. In Figure 1a each row contains the average predicted distribution (i.e. the
average of the distributions with the ground-truth rating corresponding to the row).
In Figure 1b, each row is a histogram of expected ratings (i.e. we take the expected
rating for each distribution).
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4.2. Generative Queries
Passing the free-form responses of all 100 participants to GPT-4 would exceed its context
window of 32K tokens. For our number of 100 surveyed participants, however, we were still able
to circumvent this limitation by condensing agents’ free-form responses to be more succinct
using an LLM, and passing these succinct representations to the LLM for generation. As a
result, LLM queries scale to the full size of our group of participants, which is why our current
evaluation uses Process 1 rather than the sampling-based approximation Process 2.

We initially implemented the generative query with a single LLM call (see Appendix D
for details on the prompt), but found a series of challenges that persuaded us to adopt a
multi-prompt design instead. A first challenge with the single-prompt approach was a lack
of stability, in the sense that we found the LLM’s responses to be sensitive to details of the
prompt text, such as wording and the order of the agent descriptions. A second challenge
was that the LLM did not seem sufficiently responsive to the parameter r in our t-Gen(S, r)
queries, although the task differs substantially depending on whether the statement should
represent a small subgroup at a high minimum utility (small r) or a large subgroup at a
moderate minimum utility (larger r).12 A final challenge was that, when calling the prompt
for large sets S of agents, the generated statements tended to be milquetoast, likely due to
the LLM attempting to satisfy everyone, rather than cohesive subgroups.

To avoid these drawbacks, we implement our generative query through an ensemble: we
generate a pool consisting of several candidate statements by applying the LLM prompt
(see Appendix D for details on the prompt) to different subsets of agents in S. We then use
discriminative queries to estimate agents’ utilities for each statement in the pool and return
the one that maximizes the objective of the idealized generative query, see Eq. (1).13 For our
pilot experiment, our ensemble contains the following statement sources:

• We initialize the pool with four statements generated by clustering participants using a
k-means heuristic, and applying the generation prompt to each cluster.14

• For each generative query, we call the LLM prompt twice on all agents in S; once with a
generation temperature of 0 and once with a temperature of 1.

• For each generative query, we additionally call the LLM prompt on a set of five agents,
randomly selected without replacement from S.

• Furthermore, for each generative query, we compute three statements by applying the LLM
prompt to different sets of agents produced by a nearest-neighbor heuristic.15

Evaluating the generative queries in a quantitative way is difficult for several reasons. First,
since the 100 participants never see the statements generated based on their responses, we
do not know their real ratings for these statements and have to rely on the discriminative
queries as a proxy. Second, the optimization performed by the idealized generative query
12This lack of responsiveness persisted despite chain-of-thought prompting [Wei et al., 2022].
13We maintain all statements from previous calls to the generative query in the pool, as we this does not

require any additional LLM calls.
14Since none of these statements were selected for the slate, we omit a detailed description.
15Specifically, we select a random agent i, and use the discriminative query to order the other agents in terms

of how much they agree with agent i’s free-form opinions. We then select the s most aligned agents for
some fixed number s, and apply the LLM prompt to the resulting cluster of s + 1 agents. Three sets are
produced with s = 5, s = 10 and s = 15. The three clusters are produced with s = 5; s = 10; and s = 5
except only a random subset of 20 agents is considered.
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(see Eq. (1)) clearly cannot be solved in practice. It is hence difficult to evaluate how far our
implementation is from the ideal query.

Therefore, we will restrict our evaluation to comparing the different types of statement
generation sources in our ensemble and show that they are complementary, i.e., that we benefit
from choosing an ensemble approach rather than any single source. For this experiment, we
randomly draw 40 out of the 100 agents and attempt to find a statement that maximizes the
20th-highest rating.16 We then generate one statement each through four sources (three of
which feature in our ensemble), by applying the LLM prompt once to all 40 agents (“all”),
once to a random subset of five agents (“random 5”), once to a group of six agents generated
by the nearest-neighbor heuristic (“nn(s = 5)”, see Footnote 15 for details), and once, as a
point of reference, to a single randomly selected agent (“random 1”). We run this experiment
50 times and show the results in Figure 2a.

random 1 random 5 all nn(s=5) maximum
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

(a) Distribution of the 20th-highest utility obtained by the
statements from different sources.

all

30.0%
nn(s=5)

32.0%

random 1

22.0% random 5
16.0%

(b) Percentage of experiments in which
each statement source obtained a higher
20th-highest utility than all others.

Figure 2: Evaluation of the 20th-highest utility obtained by different generation sources in
our experiments. Each of the 50 datapoints corresponds to a random sample of 40
out of the 100 agents.

The main difference across the generation sources is their robustness, i.e., how often they
yield statements whose 20th-highest utility is below 2.8. If we were to generate statements
based on a single random agent (“random 1”), such low-utility statements would be frequently
chosen, which is to be expected given that the randomly chosen agent’s opinions need not
align with the remaining agents. When we instead apply the LLM prompt to a random set of
five agents (“random 5”), unpopular statements become less frequent. Including all agents in
the prompt (“all”) further increases the chance of very good statements, and decreases the
incidence of very bad outliers. Still, this kind of generation does not entirely dominate the
“random 5” generation source since it produces statements with mediocre highest-20 ratings
(between 2 and 2.8) more frequently than the random-5 approach. The nearest-neighbors
heuristic clearly outperforms the other three generation approaches. Indeed, all statements it
produces have a 20-th highest utility above 2.7, which demonstrates the promise of applying
16This simulates what is required of the generative query in the fourth round of running Process 1 with

n = 100, k = 5.
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the LLM prompt to subsets of agents that are chosen to be aligned in their opinions, rather
than on random subsets or all agents.

Though the nearest-neighbor generation yields better statements than any other generation
source in isolation, this does not mean that these other sources become redundant. Indeed,
the last entry (“maximum”) of Figure 2a shows that taking the best out of all four generation
sources further reduces the lower tail of 20th-highest utilities, and that only this approach
manages to generate very popular statements (rating above 3.2) most of the time. Figure 2b
shows that the best-out-of-four statement is only chosen as the nearest-neighbor statement in
about a third of our experiments. This implies that, even though the other three approaches
individually lack robustness, it is rare that all three fail on the same instance. Our ensemble
approach to statement generation makes use of this complementarity between generation
sources.

There would be much to learn by extending this experiment to larger groups of remaining
agents, different values of r, and more generation sources. In particular, it would be very
interesting to study whether including multiple copies of the same generation source pays off
or not. Unfortunately, the financial cost of running these experiments is currently limiting
our analysis. This cost is mainly due to the large number of GPT-4 calls made for the
discriminative queries, which on their own cost around $500 for the experiment in Figure 2.17

OpenAI’s recent announcement of GPT-4-turbo, a GPT-4 API at about a third of the cost of
the version we used, makes us hopeful that the cost of such experiments will soon decrease.

5. Pilot on Chatbot Personalization
We piloted our democratic process as part of the OpenAI “Democratic Inputs to AI” grant
program. We used our method to study public opinion regarding chatbot personalization. We
ran surveys regarding this topic on November 1 and 2, 2023 and generated a slate of five
statements representing public opinion. To obtain actionable guidelines for the development
of chatbots, we adopt a statement format that consists of the rule that participants judge
most important for chatbot personalization, a brief justification for the rule’s importance, and
an illustrating example.

5.1. Pilot Description
We illustrate the setup of the pilot in Figure 3. We first recruit 100 participants through
the online platform Prolific.18 Our sample consists of US residents, stratified with respect
to age, gender, and race.19 We ask these participants to complete a survey on chatbot
personalization.20 To introduce participants to the topic of chatbot personalization, we first
show them background information and ask them whether a chatbot should personalize its
answer in each of three example scenarios. Then, we asked participants to describe their

17The experiment’s 50 random seeds, 40 agents per seed, and 4 statement to be evaluated per agent result
in 50 · 40 · 4 = 8000 discriminative queries. Since each discriminative query has a length of approximately
2000 tokens, at a current cost of $0.03 per thousand tokens for the GPT-4 base model, the cost for the
experiment’s discriminative queries alone is about $500.

18https://www.prolific.com/
19For more details on the demographic composition of the sample, see Appendix C.1.
20See Appendix E.1 for the verbatim survey questions.

17

https://www.prolific.com/


𝑛𝑛 participants

Survey

𝑛𝑛 responses

Algorithm

𝑘𝑘 summary statements

𝑛𝑛 new participants

Survey

𝑛𝑛 × 𝑘𝑘 approval ratings

Matching

Measurement of representation

Generation Validation

Figure 3: Overview over the pilot run of our process: In the first stage (“generation”, left), we
survey n = 100 participants. We then feed their responses into Process 1 to generate
a slate of k = 5 statements. In the second stage (“validation”, right), we validate
these statements by asking a fresh sample of n = 100 participants to rate the five
statements. Based on these ratings, we match participants optimally to statements,
such that each statement represents an equal number of participants.

stance on chatbot personalization, by answering four questions in free-text form that ask
about the trade-offs of personalization, the rules participants would like to see imposed on
chatbot personalization, as well as arguments for and against their proposed rules.

We also ask participants to rate their agreement with six example statements, which we
generate with a single call to GPT-4 and without knowledge of participant responses. These
ratings are given on the five-level scale described at the beginning of Section 4. Both the
initial scenarios and statements are shown to participants in random order.

Based on participant responses, we extract a slate of five representative statements using
Process 1. To evaluate this slate, we then launch a second survey with a new set of 100
stratified participants to validate the 5 output statements (see the right box in Figure 3).
In this second survey, after showing participants the same introductory information about
chatbots, we ask them to rate the five statements (using the same question format as at the
end of the first survey round).

The experiments were approved by the Harvard IRB. For reproducibility, and to support
future research on online participation, we made participants’ full responses available at
https://github.com/generative-social-choice/chatbot_personalization_data/.
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5.2. Generated Slate
The generated slate contains the following five statements. We highlight key points in color:

S1. The most important rule for chatbot personalization is to give users control over
the extent of personalization and the data supplied. This rule is crucial as it
ensures user autonomy, privacy, and a personalized experience. For instance, a user
could choose to share their dietary preferences with a health chatbot for tailored advice,
while opting not to disclose sensitive health data.

S2. The most important rule for chatbot personalization is to always give users the choice
whether the AI chatbot can remember their data or not. This rule is crucial
because it respects the user’s privacy and gives them control over their own data.
For instance, a user might prefer a chatbot not to store any data about their past travels,
thus avoiding unsolicited vacation suggestions.

S3. The most important rule for chatbot personalization is to always prioritize user
privacy and data security. This is crucial because it ensures the protection of
sensitive user information, thereby building trust and promoting responsible AI use. For
instance, a chatbot providing personalized health advice should only collect and use
data with explicit user consent, and should implement robust measures to prevent
unauthorized access or data breaches.

S4. The most important rule for chatbot personalization is to avoid providing false or
misleading information. This rule is crucial because it ensures the reliability and
trustworthiness of the chatbot, which is essential for user engagement and satisfaction.
For instance, if a user asks a chatbot for medical advice, providing accurate information
could potentially save lives.

S5. The most important rule for chatbot personalization is to emphasize privacy and
require user consent for data collection. This rule is crucial to ensure personal
security and mental health protection. For instance, a health bot providing personalized
services can offer tailored care, but without proper privacy measures, it risks violating
user privacy.

All statements were generated by the nearest-neighbor heuristic, which proves highly effective,
except for statement S3, which resulted from applying the LLM prompt to all 60 remaining
agents.21 Among the selected statements, all statements except for S2 were added to the pool
of candidates in the round in which they were selected, which demonstrates that generation is
responsive to which agents have been removed from consideration.

In terms of the content of the statements, no statement is categorically opposed to person-
alization, but each statement expresses restrictions on personalization that major groups of
US residents believe should be respected. We understand the following three points to be the
main themes of the slate:

• Privacy and data security: Four out of five statements stress the importance of privacy
and of preventing chatbot data from being used in other contexts.

• User control: Four out of five groups believe that it is essential that users have granular
control over which of their data are stored and used for personalization.

21Statement S1 was generated by adding s = 10 neighbors, whereas S2, S4, and S5 were generated for s = 5.
Only S4 resulted from a randomly subsampled pool (retaining 20 of the then-remaining 40 agents). The
sampling temperature for S3 was 0.

19



• Truthfulness: The third statement’s primary concern is that chatbots should never provide
inaccurate or misleading information.

A striking feature of the slate is the high level of agreement between statements: Indeed, S1,
S2, S3, and S4 all express a concern about privacy and data security while recommending
user control as a guardrail on personalization. Both the high level of agreement between
participants, and the popularity of these two themes came as a surprise to us.

Before we investigate this repetition in more detail, we want to highlight that these four
statements, while aligned in their high level themes, connect them in different ways and
emphasize different nuances. For instance, statement S5’s concern about privacy and user
control is justified by security and mental health concerns, which is much more specific than
the more generic justification of, say, S2. Another interesting statement is S1, in which privacy
appears only as one out of multiple underlying values served by user control, and which
stresses not just user control at the time of data collection, but also control about the level of
personalization when the chatbot is subsequently used. As we will see in Figure 5, participants
frequently rate their agreement with the four statements in the cluster quite differently.

The remaining statement, S4, stresses that chatbot personalization should not go so far as
to compromise the chatbot’s truthfulness. While this option was also not brought up by our
introductory materials, either, one of our expository scenarios touched on a related point by
asking if a chatbot should deliver distressing information in a gentler manner to a depressed
user. Statement S4 does not take a position on this specific question, but sets a clear boundary
on how far the chatbot might go to accommodate the user’s presumed vulnerability. (The
statement does not rule out that the chatbot might decline to answer in this situation.)

5.3. Does the Slate Represent the Generation Sample?
Given the novelty of our process, and the central role of LLMs in it, we need to thoroughly
verify that our slate indeed faithfully represents participant opinions rather than being based
on hallucinations by the LLM. In part, this concern will be addressed by the next section’s
analysis, which will show that a fresh sample of participants indeed feels accurately represented
by the statements on our slate.

In this section, as an orthogonal analysis, we manually inspect and hand-label the responses
of our generation sample to trace how our process arrived at the slate starting from participants’
statements. Reassuringly, we find that privacy and data security and user control are indeed
central themes in people’s free-form opinion statements: 61 of the 100 participants touch
on privacy and data security in their statements, 38 suggest user control, and 72 bring up
at least one of these two topics. Though we have not attempted to systematically label all
recurring themes in the survey responses, privacy and data security is certainly one of the most
prevalent themes, and quite likely the most prevalent one.22 That the themes of privacy and
user control are so prevalent is particularly noteworthy because no part of our introductory
materials primed participants towards these topics to our understanding — participants instead
independently arrived at these points.

22By comparison, truthfulness was mentioned by 48 participants (among which 32 also mention at least one
out of privacy and data security and user control), and 35 participants mention concerns that information
from the chatbot could lead to direct harm (either because false information leads to harm, or because the
information supports the user in harmful actions such as criminal activity).
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The number of 72 participants who touched on privacy and data security and user control
alone can plausibly justify that these themes take up 80% of the slate. Moreover, this number
does not yet count agents who expressed agreement with these themes outside of the free-form
responses. Indeed, the six statements we show to the generation sample include a statement
that touches on user control:

“The most important rule for chatbot personalization is to always offer an opt-out.
Mandatory personalization disregards user autonomy. For example, a person might
not want location-based suggestions just because they mentioned a city once.”

This statement received high ratings among participants of the generation sample: 49 of
them rated this statement as “perfectly” capturing their opinion, 76 participants rated this
statement as “perfectly” or “somewhat” capturing their opinion, and only 3 participants
rated this statement as capturing their opinion “poorly” or “not at all”.23 Furthermore, this
statement from the generation round does not yet touch on the (frequently mentioned) topic
of privacy, whose addition might further enhance a statement’s appeal. In light of these
observations, representing 80% of agents with a statement about privacy and data security
and user control seems like a reasonable choice.

5.4. Does the Slate Represent the Validation Sample and US Population?
According to the ideal of proportional representation, each statement in our generated slate
should represent 1/5 of the US population as accurately as possible. To verify this, we match
the participants of our validation sample (which, recall, mirrors the US population with
respect to sex, age, and race) to the statements of our slate such that the sum of participants’
rating levels for their assignment is maximized, i.e., such that the assignment maximizes the
representation objective of Monroe [1995]. We then study the ratings of participants for their
assigned statements.

As can be seen in Figure 4, 75% of the participants say that their assigned statement
“perfectly” captures their full opinion on chatbot personalization, and an additional 18% of
participants say it “mostly” captures their full opinion. Only 7% of participants feel only
“somewhat” represented or less. Hence, the vast majority of participant opinions are represented
accurately by our slate of statements.

Remarkably, none of the 100 agents have a higher rating for a statement other than their
assigned statement, which means that the requirement to assign an equal number of agents to
each statement is not a binding constraint. This is a good sign for our claim of proportional
representation, which could be in question if, say, many agents would rather be matched
to the truthfulness statement S4 than their current assignment. It also shows that, should
the slate violate BJR, this violation would have to be based on an entirely different kind of
statement. Moreover, since such a violation would have to strictly increase the utility of all
20 members of the deviating coalition, it would have to unite most of the 25 agents who are
not yet “perfectly” represented and would have to “perfectly” represent all members of this
23These ratings in the generation sample are not directly comparable with the ratings of the validation sample,

since participants in both surveys have been primed quite differently. By the time we ask the participants
of the generation round to rate this statement, they have spent considerable time in the survey considering
specific scenarios and describing their opinions in free text. By contrast, participants in the validation
sample have only been exposed to the introductory text about chatbot personalization.
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not at all
somewhat

mostly

perfectly

How well does your assigned statement represent you?
not at all (1%) poorly (0%) somewhat (6%) mostly (18%) perfectly (75%)

Figure 4: Ratings of participants from the validation survey for their assigned statement.

coalition who are already “mostly” represented. While we cannot entirely rule out such a BJR
violation, this narrow path makes the existence of a violation seem unlikely.

Naturally, it is important to closely inspect the minority of 7 agents who feel relatively
badly represented by their assigned statement, since their responses could potentially reveal
viewpoints missing from our slate. Though the free-text explanations given with the ratings
are typically short, they allow us to understand what the seven participants dislike about the
selected statements. While certain themes occur repeatedly among these seven participants,24

their reasons for feeling relatively unrepresented are eclectic. Since proportionality axioms like
BJR only guarantee representation to large, cohesive groups, these responses also give us no
reason to doubt the representativeness of our slate.

Having established that the slate of statements represents the population well, an interesting
question is how distinct the preferences of different groups are. Are they all very similar
and would be just as happy with another group’s statement? To answer this question, we
display the distribution of ratings across statements for each group in Figure 5. Comparing
the different plots, it is clear that different groups have different preferences across statements.
In particular, each group has a very clear preference for its assigned statement over the other
statements (in Figure 5, see the distributions on the diagonal, from top left to bottom right).

Taken together, Figures 4 and 5 indicate that there is heterogeneity in opinions across the
population and that our slate accurately represents this heterogeneity.

6. Discussion
Our pilot study shows that a democratic process for selecting representative statements is not
just a hypothetical exercise, but one of practical relevance. Before our process can be deployed

24For instance, four of these participants do not believe that chatbot companies can be trusted to not collect
data despite their customers’ privacy choices or to keep collected data safe; and three express that the
advantages of including all available data outweighs potential privacy risks. At least three of the participants
doubt that chatbots can meaningfully identify truth or should be relied on as truthful.
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perfectly

G2

not at all
poorly

somewhat
mostly

perfectly

G3

not at all
poorly

somewhat
mostly

perfectly

G4

S1 S2 S3 S4 S5
not at all

poorly
somewhat

mostly
perfectly

G5

Figure 5: Agreement of participants in different groups with each of the statements. Each row
corresponds to a group; for example, G1 represents the 20 participants assigned
to statement S1. For each group, we plot the frequencies of rating levels given by
members of this group to statements S1 through S5.

in high-stakes settings, however, it will require adaptations that increase its reliability and
mitigate bias.

In terms of reliability, we have seen that GPT-4 sometimes produces unpopular or imprecise
statements. Our current implementation of the generative query increases robustness by
generating multiple candidate statements with different approaches, and using the discrimi-
native query to select the best among them. However, our process has yet to be hardened
against malicious participant input, such as prompt injections meant to sway the generative
queries in particular directions [Wallace et al., 2019]. Another issue requiring mitigation is the
well-documented biases of LLMs against groups of people [Basta et al., 2019, Kurita et al.,
2019] and viewpoints [e.g. Hartmann et al., 2023], which could undermine our goal of impartial
and representative aggregation. These issues should be empirically studied before deployment,
along with strategies for mitigation, such as improved prompts or usage of specific models.

Perhaps the biggest challenge is the lack of transparency inherent to any process involving
LLMs. This issue, and the resulting threat to the legitimacy of the process, could be alleviated
by adding participatory stages. A simple example of this is our pilot’s validation round, in
which a fresh sample of participants, without any involvement of the LLM, demonstrated a fit
between the generated slate and public opinion. If participants are available for interactive
participation, a very elaborate participatory strengthening of our process would be to replace
each generative query by a phase of participation, in which participants and LLMs propose
statements with large support and the winning statement is selected by vote. Including such
participatory elements can increase legitimacy, albeit at a cost to scalability — a key strength
of our proposed process. Enhancing democratic processes with LLMs opens up new points on
the legitimacy-scalability tradeoff curve, which, we hope, can enable new forms of collective
decisions.
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APPENDIX

A. Relationship between BJR and Other Justified Representation
Axioms

Proposition 7. Balanced justified representation (BJR) is incomparable with proportional
justified representation (PJR), extended justified representation (EJR), full justified represen-
tation (FJR), and core stability. This incomparability holds even for approval utilities, and
holds both in our setting where slates/committees are multisets25 and in the classical setting
where they are sets (using the adaptation of BJR in Footnote 5).

Proof. We will show this incomparability in two steps: we first show that BJR implies none
of the other axioms, and then that none of the axioms implies BJR.

BJR does not imply other axioms. Consider the instance with n = 6, k = 4, and the
following utilities:

α α′ α− β γ δ

u1 1 1 1 0 0 0
u2 1 1 1 0 0 0
u3 1 1 0 0 0 0
u4 0 0 0 1 0 0
u5 0 0 0 0 1 0
u6 0 0 0 0 0 1

In this instance, the slate {α−, β, γ, δ} satisfies BJR since, if we assign agents 1 and 2 to
α−, agents 3 and 4 to β, agent 5 to γ, and agent 6 to δ, then only agent 3 is not already
maximally satisfied. As a result, no potential deviating coalition can include the necessary
n/k = 3/2 agents.

By contrast, this slate does not satisfy PJR because the coalition of agents 1, 2, and 3 is
large enough to proportionally claim ℓ = 2 statements, has two statements they all like in
common (α, α′), but only one of the four statements on the slate is liked by any agent in this
coalition.

Since EJR, FJR, and core stability imply PJR, none of them can be implied by BJR either.

Other axioms do not imply BJR. To prove this direction of the claim, consider the following
instance with n = 8 agents and k = 4. The table below shows the agents’ utilities for a subset
of the statements:

25Brill et al. [2022] give a formal embedding to translate existing justified representation axioms to the multiset
setting (“party-approval elections”, in their terminology). Whereas the existence of core stable committees
is unresolved when committees are sets of alternatives, such committees are guaranteed to exist in the
multiset setting [Brill et al., 2022].
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α α′ β β′

u1 1 1 0 0
u2, u3, u4 1 0 0 0

u5 0 0 1 1
u6, u7, u8 0 0 1 0

In addition, any pair of agents {i, j} is associated with a statement γi,j , which exactly they
approve.

In this instance, the slate {α, α′, β, β′} does not satisfy BJR. Indeed, since a balanced
assignment assigns two agents to each statement of the slate, it holds for any such balanced
assignment that some agent i assigned to α′ and some agent j assigned to β′ have 0 utility for
their assigned statement. Since these two agents could deviate to the statement γi,j , BJR is
violated.

By contrast, we will show that this slate satisfies core stability, and thus the weaker axioms of
FJR, EJR, and PJR. Indeed, suppose that some non-empty coalition S along with a (multi)set
T of at most |S|

n · k statements formed a core deviation. Suppose that S includes 0 ≤ x ≤ 2
many among the agents {1, 5}. Since agents 1 and 5 have a utility of 2 for the candidate slate,
they can only be part of a deviating coalition if the deviation T gives them utility at least 3.
Analogously, since the other agents have a utilty of 1 for the candidate slate, they can only
deviate if T gives them utility at least 2. If we define the coalition welfare cw as the sum of
utilities, across the agents in S, for T , it follows that cw ≥ 3 x + 2 (|S| − x) = 2 |S|+ x. Now,
the average contribution of a statement in T to this objective is

cw
|T |
≥ 2 |S|+ x

|S| k/n
≥ 2 n

k
+ x

n

|S| k
= 4 + x

2
|S|︸︷︷︸
>0

. (2)

Note that statements α and β are the only ones that can potentially contribute at least 4 to
the coalitional welfare (since all other statements are approved by fewer than two agents),
and they can also contribute only exactly an amount of 4, never more. Thus, it must be
that cw/|T | is equal to 4. This, in turn, implies that x = 0, i.e., that agents 1 and 5 are not
in S, and that T consists only of the statements α and β (possibly with repetition). But
now observe that, since agents 1 and 5 are not in the coalition, α and β cannot marginally
contribute more than 3 to the coalition welfare, which contradicts Eq. (2) and thus shows
that the slate satisfies core stability.

B. Deferred Proofs
Theorem 5. No democratic process can guarantee balanced justified representation with any
number of Disc(·, ·) queries and fewer than 2

k en/(12k) queries of type n
8 -Gen(·, ·). This holds

even for the subsetting of approval utilities and the weaker axiom of justified representation. As
a corollary, if k ∈ O(n0.99), then any democratic process guaranteeing BJR with n

8 -Gen(·, ·)
and Disc(·, ·) queries has exponential running time.

Proof. Choose k to be an even integer and n as a multiple of 8, such that t := n/8 is integer
as well. Fix a process that makes fewer than 2

k en/(12k) many t-Gen(·, ·) and any number of
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discriminative queries. We will prove the claim using the probabilistic method: we will define
a random instance and show that the process will fail BJR with positive probability, which
means that there exists a deterministic instance where the process fails BJR. In fact, the
random instances we construct will have approval utilities, and we will derive a contradiction
to not just BJR, but also JR on this instance, to simultaneously prove the “this holds even. . . ”
part of the claim.

For given n, k, construct our instance as follows: Each set S of n
2 k many agents has infinitely

many “unpopular” statements that have utility 1 for S and utility 0 for all other agents.
Furthermore, each agent is uniformly and independently assigned a color in {1, 2, . . . , k/2},
and all agents with the same color c have utility 1 for a “popular” statement βc, which has
utility 0 for everyone else. Since all utilities are 0 or 1, there will typically be many statements
α that are tied in the definition of a generative query Gen(S, r) (Eq. (1)): if there exist
statements that have utility 1 for at least r agents in S, any such statement may be returned;
if no such statements exist, the query may return any arbitarary statement. To resolve this
ambiguity, we assume that the generative query breaks ties in the “most favorable” way: the
generative query will respond to Gen(S, r) with a statement that has utility 1 for as many
agents in S as possible, and breaks remaining ties according to some canonical ordering of
statements in which unpopular comments precede popular comments.

Consider the trajectory of the process on an instance with just the unpopular statements, i.e.,
where each t-Gen(S, ·) query of the process is answered by a canonical unpopular statement
that attains the maximum number min(|S|, n

2 k ) of agents in S that have utility 1 for it.
Now, consider the random instance with unpopular and popular statements. We will show

that, with positive probability, all t-Gen(·, ·) queries made by the process are still answered
by their canonical unpopular statement, which means that the process will follow the same
trajectory as above. This will be the case if, for each t-Gen(S, ·) query made by the process
and for each color c, at most n

2 k agents in S have color c, so that βc will not be returned by
the query. For a specific S and c, the probability of this event can be upper-bounded using
Chernoff as

P
[
at least n

2 k
agents in S have color c

]
= P

[
Binomial(n/8, 2/k) ≥ 2 · n

4 k

]
≤ exp

[
− n

12 k

]
.

By a union bound, it follows that, with positive probability, this event does not occur in
any of the fewer than 2

k en/(12k) queries, for any of the k
2 colors. This implies that there is an

instance in the support of our random instance on which the trajectory of the process remains
the same as if there were no popular statements and where, in particular, the process must
return a slate of unpopular statements.

Finally, we show that, when the process only returns unpopular statements, it must violate
justified representation. (This always hold for our random instance, ex post.) Since each
unpopular statements gives positive utility to at most n

2 k agents, no more than n
2 agents can

be covered by the slate of k statements selected by the process. Therefore, there are at least n
2

uncovered agents, which are partitioned in some arbitrary manner across the k
2 many colors.
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By an averaging argument, there must be some color c with at least n
k uncovered agents,

which means that the process’ output violates justified representation and BJR for βc.

Lemma 8 (Agnostic PAC learning for sampling without replacement). Let H be a hypothesis
class, consisting of binary classifiers h : X → Y, with |Y| = 2, over some domain X . Let
d <∞ denote the VC-dimension of H. For a given hypothesis h ∈ H, denote its 0–1 loss on
a nonempty finite set S ⊆ X × Y of labeled datapoints by LS(h) := ∑

(x,y)∈S 1{h(x) ̸= y}/|S|.
Let D ⊆ X × Y be a finite set of labeled datapoints. Consider a random process that

chooses some number m ≤ |D|/2 of labeled datapoints S = {(x1, y1), (x2, y2), . . . , (xm, ym)}
from D uniformly and without replacement, and denote by ĥ the empirical risk minimizer
argminh∈H LS(h). For any 0 < ϵ < 1, 0 < δ < 1, this process will satisfy

LD(ĥ) ≤ min
h∈H

LD(h) + ϵ (3)

and
|LS(h)− LD(h)| ≤ ϵ ∀h ∈ H (4)

with probability at least 1− δ, as long as

m ≥ C · d + log 1/δ

ϵ2 (5)

for some absolute constant C.

Proof. If |D| ≥ m2/δ, the result will follow from the sampling bounds for i.i.d. samples. Note
that we can implement the without-replacement drawing of S through rejection sampling,
i.e., by drawing a sample of m datapoints uniformly with replacement, and re-drawing if
this sample should contain any datapoint multiple times. We will consider only the first
round of this rejection sampling. The probability that any two datapoints are identical is
at most ∑m−1

i=0 i/|D| = m (m−1)
2 |D| ≤ m2

2 |D| ≤ δ/2, so we reject with probability at most δ/2.
Moreover, since drawing with replacement is the same as drawing i.i.d. from the uniform
distribution over D, we can apply a standard agnostic PAC learning bound [Shalev-Shwartz
and Ben-David, 2014, Thm. 6.8] to show that the empirical risk minimizer ĥ on the sample
with replacement satisfies Eq. (3) with probability at least 1− δ/2 as long as the constant
in Eq. (5) is sufficiently large. By a union bound over both events, with probability at least
1− δ, the with-replacement sample is not rejected and additionally satisfies Eq. (3), which
proves the claim for our sampling process without replacement in the case of |D| ≥ m2/δ.

From here on, suppose that |D| < m2/δ. Essentially, our claim will follow from Theorem 2
by El-Yaniv and Pechyony [2009], a bound on transductive learning, but we have to do some
work to get their bound into our desired shape. We apply their Theorem 2 twice, with a value
of δ that is half of the δ in our theorem, the full sample D, the hypothesis class H, γ = 1,
and setting m once to m and once to |D| −m (swapping the role of sampled and not sampled
datapoints). By union-bounding over both invocations and unfolding some definitions in the
theorem, we obtain that, with probability at least 1− δ, it holds for all h ∈ H that

LD\S(h) ≤ LS(h) + Rtrans(H) + slack and LS(h) ≤ LD\S(h) + Rtrans(H) + slack (6)

where Rtrans(H) denotes the transductive Rademacher complexity of H on D, and slack is
defined and bounded in the following.
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The slack term is defined as

slack := c0 q
√

m +
√

s q

2 ln 1/δ,

where c0 < 5.05 is an absolute constant, q := 1
m + 1

|D|−m ≤
2
m , and s := |D|

(|D|−1/2)·(1− 1
2(|D|−m) ) .

Since m is a positive integer, m ≥ 1, hence |D|−m ≥ m ≥ 1, and thus s = |D|
|D|−1/2 ·

1
1− 1

2 (|D|−m)
≤

4/3 · 2 = 8/3. Thus,

slack ≤ 5.05 · 2√
m

+

√
8/3
m

ln 1/δ = 1√
m

(10.10 +
√

8/3 ln 1/δ). (7)

Next, we bound the transductive Rademacher complexity, for which we require several
definitions: Let x⃗ ∈ X |D| be a vector listing the first components (i.e., the unlabeled datapoints)
for all members of D, in arbitrary order. For an index set I ⊆ {1, . . . , |D|}, let x⃗I ∈ X |I|

be the restriction of x⃗ to the indices I. For a hypothesis h and a vector v⃗, let h(v⃗) be the
vector that results from applying h element-wise to the entries of v⃗. Since the codomain of the
hypothesis class is binary, i.e. |Y| = 2, we will assume here that Y = {−1, 1} without loss of
generality. For any t ∈ N, let Σt

trans denote the probability distribution over vectors of length
t, whose entries are drawn i.i.d. and are equal to −1 with probability m (|D|−m)

|D|2 , equal to 1
with probability m (|D|−m)

|D|2 , and are 0 otherwise. Furthermore, let Σt
ind denote the probability

distribution over vectors of length t whose entries are independently drawn and −1 or 1 with
equal probability. Finally, denote by B the probability distribution over subsets of {1, . . . , |D|}
in which each element is contained in the subset independently with probability 2 m (|D|−m)

|D|2 .
In this notation, El-Yaniv and Pechyony [2009, Def. 1 and p. 6] define the transductive

Rademacher complexity Rtrans(H) as

( 1
m + 1

|D|−m) · E
σ⃗∼Σ|D|

trans
sup h∈H σ⃗T h(x⃗).

Note that we can draw σ⃗ from Σ|D|
trans in two steps: we first draw the set of indices I from

B whose entries in σ⃗ are nonzero, and then set σ⃗’s coordinates in I to −1 or 1 with equal
probability. Therefore, we can equivalently write

Rtrans(H) = ( 1
m + 1

|D|−m) · EI∼B E
σ⃗∼Σ|I|

ind
sup h∈H σ⃗T h(x⃗I).

By Bartlett and Mendelson [2002, Lemma 4 & Thm. 6], E
σ⃗∼Σ|I|

ind
sup h∈H σ⃗T h(x⃗I) ≤ c1

√
d|I|

for some absolute constant c1. Thus, we can bound

Rtrans(H) ≤ c1 ( 1
m + 1

|D|−m) · EI∼B
√

d|I|

≤ c1
2
m · EI∼B

√
d|I| m ≤ |D| −m

≤ 2 c1
√

d

m
· E

t∼Binomial
(

|D|, 2 m (|D|−m)
|D|2

)√t

≤ 2 c1
√

d

m

(√
6 m (|D|−m)

|D| + P
[
Binomial

(
|D|, 2 m (|D|−m)

|D|2
)

> 6 m (|D|−m)
|D|

]
·
√
|D|

)
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≤ 2 c1
√

d

m

(√
6 m (|D|−m)

|D| + exp(−2 m (|D|−m)
|D| ) ·

√
|D|

)
(Chernoff bound)

≤ 2 c1
√

d

m

(√
6 m + exp

(
ln |D|

2 −m
))

(1/2 ≤ |D|−m
|D| ≤ 1)

≤ 2 c1
√

d

m

(√
6 m + exp

(
ln m2/δ

2 −m
))

(|D| < m2/δ)

= 2 c1
√

d

m

(√
6 m + exp

(
ln 1/δ

2 + ln m−m
))

≤ 2 c1
√

d

m

(√
6 m + exp

(
ln 1/δ

2 − (1− 1/e)m
))

(x− ln x ≥ (1− 1/e) x))

By choosing a large enough constant in Eq. (5), we can ensure that (1− 1/e)m ≥ ln 1/δ
2 . Then,

we can continue:

≤ 2 c1
√

d

m

(√
6 m + e0

)
≤ 2 c1

√
d

m (
√

6 + 1)
√

m

≤ c2
√

d√
m

, (8)

where we set c2 := 2 (
√

6 + 1) c1. Putting together Eqs. (6) to (8), we obtain that, for all
h ∈ H,

LD\S(h) ≤ LS(h) + α and LS(h) ≤ LD\S(h) + α

where we defined
α := 10.10 +

√
8/3 ln 1/δ + c2

√
d√

m
.

We have

LD(h) = m

|D|
LS(h) + |D| −m

|D|
LD\S(h)

≤ m

|D|
LS(h) + |D| −m

|D|
(LS(h) + α)

≤ LS(h) + α

and using a similar argument for the the other side, we obtain an error bound that holds
uniformly across all hypothesis

|LS(h)− LD(h)| ≤ α ∀h.

Finally, we compute also a bound for the empirical risk minimizer. We set h∗ := argminh∈H LD(h).
Then, we bound

LD(ĥ)− LD(h∗)

= m

|D|

(
LS(ĥ)− LS(h∗)

)
+ |D| −m

|D|

(
LD\S(ĥ)− LD\S(h∗)

)
≤ m

|D|

(
LS(ĥ)− LS(h∗)

)
+ |D|−m

|D|

(
LS(ĥ)− LS(h∗) + 2 α

)
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= LS(ĥ)− LS(h∗)︸ ︷︷ ︸
≤ 0, by definition of ĥ

+2 |D|−m
|D| α

≤ 2 α

By choosing the constant in Eq. (5) large enough, we can ensure26 that

m ≥ 4
ϵ2 · 3 (10.102 + 8/3 ln 1/δ + c2

2d).

By Cauchy’s inequality, this implies that

m ≥ 4
ϵ2 · (10.10 +

√
8/3 ln 1/δ + c2

√
d)2,

and, by rearranging, that

ϵ ≥ 2 10.10 +
√

8/3 ln 1/δ + c2
√

d√
m

= 2 · α.

Thus, with probability at least 1− δ, ϵ ≥ LD(ĥ)− LD(h∗), and ϵ ≥ |LS(h)− LD(h)| ∀h, as
claimed.

Theorem 6. Let d be the VC-dimension of the statement space and δ > 0 the maximum
admissible error probability. Then, Process 2 runs in polynomial time in n, k (independent of
d) and satisfies BJR with probability at least 1− δ using the following queries: Disc(·, ·) and
t-Gen(·, ·) with t = O

(
k4(d+log k

δ )
)
.

Proof. For convenience, we define supp(α, θ|S) := {i ∈ S | ui(α) ≥ θ} to be the set of agents
in S who have utility at least θ for statement α. Further, we define Process 3, which is
equivalent to Process 2 but whose more explicit notation makes it easier to refer to specific
values of the variables in this proof. Note that we have

Gen(S, ⌈r⌉) = argmax
α∈U

sup {θ | |supp(α, θ|S)| ≥ r}

and hence we can write αj defined in Line 13 of Process 3 as

αj = argmax
α∈U

sup {θ | |supp (α, θ|Yj)| ≥ r̄x} . (9)

Step 1. We start by showing that with probability at least 1− δ, we have∣∣∣∣ 1
nx
|supp (α, θ|Yj)| − 1

n
|supp (α, θ|Sj)|

∣∣∣∣ ≤ ϵ (10)

for all α ∈ U , θ ∈ R, and 1 ≤ j ≤ k. For convenience, we define the indicator function:

26We may assume without loss of generality that d ≥ 1, since, if d = 0, H only contains a single classifier and
the claim holds trivially. If d ≥ 1, we can upper bound the term 12·10.102

ϵ2 by a multiple of d
ϵ2 .
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Process 3: Democratic Process for BJR with Size-Constrained Queries (more explicit
version of Process 2).

1 Inputs: agents N , slate size k, VC-dimension d, error probability δ
2 nx ← 16 C k4 (d + log(k/δ)) (C is the constant from Lemma 8)
3 if n ≤ 2 · nx then
4 nx ← n

5 ϵ← 1
4k2

6 r̄x ← nx

(
1
k − ϵ

)
7 r̄ ← n

(
1
k − 2ϵ

)
8 S1 ← N
9 W0 ← ∅

10 for j = 1, 2, . . . , k do
11 Xj ← draw nx agents from N without replacement
12 Yj ← Xj ∩ Sj

13 αj ←
{

Gen(Yj , ⌈r̄x⌉) if |Yj | ≥ r̄x

some arbitrary α ∈ U else
14 θj ← sup {θ | |supp (αj , θ|Yj)| ≥ r̄x}
15 Wj ←Wj−1 ∪ {αj}

16 rj ←
{
⌈r̄⌉ if j ≤ n− k ⌊r̄⌋
⌊r̄⌋ else

17 Tj ← the rj agents in Sj with largest Disc(·, αj)
18 Sj+1 ← Sj \ Tj

19 return Wk

fα,θ(i) := I [ui(α) ≥ θ] .

We can now write:
1
n
|supp (α, θ|Sj)| = 1

n
|{i ∈ Sj | ui(α) ≥ θ}|

= 1
n

∑
i∈N

I [ui(α) ≥ θ] I [i ∈ Sj ]

= 1
n

∑
i∈N

fα,θ(i) I [i ∈ Sj ]

and similarly:

1
nx
|supp (α, θ|Yj)| = 1

nx

∑
i∈N

fα,θ(i) I [i ∈ Yj ]

= 1
nx

∑
i∈N

fα,θ(i) I [i ∈ Xj ∩ Sj ]
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= 1
nx

∑
i∈Xj

fα,θ(i) I [i ∈ Sj ] .

To bound the difference between these two terms, we map them to the learning-theoretic
setting from Lemma 8 as follows: Let the domain X be the set of agents N , and the labels Y
be {0, 1}. The set of labeled datapoints is D := {(i, 0)}i∈N , from which we draw the uniform
sample S := {(i, 0)}i∈Xj without replacement, and the hypothesis class is:

H := {fα,θ(·) I [· ∈ Sj ] | α ∈ U , θ ∈ R} .

Hence, each hypothesis can be identified with a pair (α, θ) and it is then easy to see that the
losses from Lemma 8 are precisely the terms we are trying to relate:

LS(α, θ) = 1
nx
|supp (α, θ|Yj)| and

LD(α, θ) = 1
n
|supp (α, θ|Sj)| .

Hence, Lemma 8, along with a union bound across the k steps, tells us that if the sample size
satisfies:

nx ≥ C · vc-dim(H) + log k/δ

ϵ2 (11)

= 16 C k4(vc-dim(H) + log k/δ),

then Eq. (10) holds with probability at least 1 − δ. To show Eq. (10), it remains to relate
vc-dim(H) to the VC dimension d of our statement space. Note that for all hypotheses in
H, all datapoints in Sj are constrained to 0 due to the factor I[· ∈ Sj ]. Compared to a
definition without this indicator factor, this restriction does not increase the VC-dimension
of the hypothesis class since the datapoints in Sj cannot be part of any shattered subset.
Consequently, vc-dim(H) is at most equal to the VC-dimension of the hypothesis class

{fα,θ(·) | α ∈ U , θ ∈ R} .

It is easy to verify that the VC-dimension of this set of indicator functions corresponds to our
notion of VC-dimension d, hence vc-dim(H) ≤ d, which means that our nx from Process 3
satisfies Eq. (11) and therefore Eq. (10) holds with the desired probability.

Step 2. Next, we show that, when Eq. (10) holds, it must hold that, for each iteration j, all
of the agents Tj removed in this iteration have utility at least θj for the selected statement
αj . For this, it suffices to show that there are at least rj agents in Sj with utility at least θj

for αj , i.e., that |supp (αj , θj |Sj)| ≥ rj . First, observe that we defined rj such that we always
have |Sj | ≥ rj , since ∑

1≤j≤k

rj ≤ k ⌊n ( 1
k − 2ϵ)⌋+

(
n− k ⌊n ( 1

k − 2ϵ)⌋
)
≤ n.

Secondly, in the edge case where |Yj | < r̄x, we have, by its definition in Line 14, θj = −∞
and hence the requirement is trivially satisfied. In the more interesting case of |Yj | ≥ r̄x, the
same definition implies that:

|supp (αj , θj |Yj)| ≥ r̄x.
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By applying our assumption of Eq. (10), it follows that:

1
n
|supp (αj , θj |Sj)|+ ϵ ≥ r̄x

nx

and thus that

|supp (αj , θj |Sj)| ≥ n ·
(

r̄x

nx
− ϵ

)
= r̄.

Since the left-hand-side is an integer and rj ≤ ⌈r̄⌉, it follows that

|supp (αj , θj |Sj)| ≥ rj (12)

as desired.

Step 3. We can now finally show that the algorithm satisfies BJR. Let the matching ω
be such that, for all rounds j ∈ {1, . . . , k} and agents i ∈ Tj , we have ω(i) = αj . Note
that any two Tj , Tj′ differ in size by at most 1, hence clearly the balancing condition (i.e.,
|{i : ω(i) = w}| ∈ {⌈n/k⌉, ⌊n/k⌋} for all w ∈Wk) can be satisfied by assigning the remaining
agents in Sk+1 appropriately to statements in Wk. Having defined a balanced matching ω,
consider a coalition S ⊆ N of size ≥ n/k, a candidate α ∈ U , and a θ ∈ R such that ui(α) ≥ θ
for all i ∈ S.

The number of agents remaining after the k iterations satisfies |Sk+1| < n/k, hence S ⊈ Sk+1.
To see this, consider the number of agents, rj , removed in each round. During

max {min {n− k ⌊r̄⌋ , k} , 0}

rounds, we remove ⌈r̄⌉ agents per round, and for the remaining rounds we remove ⌊r̄⌋ agents
per round. It follows that in average, we remove min

{
n
k , ⌈r̄⌉

}
agents per round. It is easy to

verify that min
{

n
k , ⌈r̄⌉

}
≥ r̄, hence

|Sk+1| ≤ n− kr̄ = 2 · k · n · ϵ = n

2k
.

This means that for some iteration q ∈ [k] we have S ∩ Tq ̸= ∅. Let q be the iteration where
this happens the first time, which implies that S ⊆ Sq and thus that

n

k
≤ |supp (α, θ|S)|

≤ |supp (α, θ|Sq)| ,

or, equivalently, that
1
k
≤ 1

n
|supp (α, θ|Sq)| .

Assuming Eq. (10), which holds with probability at least 1− δ as established in the first step,
it follows that

1
k
− ϵ ≤ 1

nx
|supp (α, θ|Yq)| ,
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or, equivalently, that

r̄x ≤ |supp (α, θ|Yq)| .

Hence, α is a candidate in the definition of αq as expressed in Eq. (9). Therefore, it must be
that θq ≥ θ. As shown in the second step, all agents in i ∈ Tq have utility ui(αq) ≥ θq ≥ θ.
Since at least one agent i ∈ S is in Tq, we have θ ≤ ui(αq) = ui(ω(i)), which means that there
can be no violation of BJR.

C. Deferred Details about Experiments
C.1. Representativeness of the Samples
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76%
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2% Mixed3%

Race (US population)

White

76%

Black
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White
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Black
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Figure 6: Demographic composition of both samples, compared to the US population as of
the 2020 census. Racial and age groups are as defined by Prolific.

As shown in Figure 6, both samples closely reflect the composition of the US population
in terms of race, sex, and age groups. In fact, the sample is not just representative along
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sex and age groups, but also within all intersection groups of sex and age. Since we adopt
Prolific’s categories for race and age, we are not aware of how many respondents identify as
Hispanic or Latino. Though Prolific’s highest age category (“58+”) is quite broad, we find
that older residents within this age bracket are also accurately represented: our generation
and validation samples respectively contain 15% and 16% respondents aged 68 and older,
compared to a share of 17% in the adult population according to the 2020 census.

D. Prompts
Discriminative queries. We implement our discriminative queries using fewshot prompting:
the LLM is given example rating behavior of a user in the prompt, and is tasked with predicting
the rating of a different statement. Our prompt follows the following template:

"""{“FREEFORM_RESPONSES": $your_opinion_dict,
“RATING_RESPONSES": $rating_summary_statements_dict"""

The placeholder $your_opinion_dict contains the user’s free-text responses to the survey
questions labeled “Your Opinion” (with questions as keys and responses as values), and the
placeholder $rating_summary_statements_dict contains the user’s responses to the survey
questions labeled “Rating Summary Statements” (with questions as keys and dictionaries
containing user ratings and free-text explanations as values). See Appendix E for the full text
of each survey question.

Below is an excerpt from a discriminative query prompt.

{
"FREEFORM_RESPONSES": {

"<h2>Your Opinion</h2>
<p>In your opinion, what are the trade-offs of personalizing versus
not personalizing chatbots? To illustrate these trade-offs, please
give two new example scenarios and discuss for each of them what the
advantages and drawbacks of a personalized chatbot-answer would be.</p>":
"Personalizing chat bot can’t be negative...",

"<h2>Your Opinion</h2>
<p>Suppose that you had the power of designing the rules for chatbot
personalization that all chatbot companies would have to follow. What
would these rules be? In what cases should/shouldn’t chatbots give
personalized answers?</p>
<p>Please put particular emphasis on rules you consider important but
<strong>other people may not have thought of or may not agree with</strong>.</p>":
"Chatbot rules should follow...",

<More questions here>
},
"RATING_RESPONSES": {

"Consider the following statement: ’The most important rule for chatbot
personalization is to adhere to stringent political correctness. Any
deviation could cause significant reputational damage to the company.
Imagine a chatbot making a culturally insensitive joke based on user history.’
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To what extent does this statement capture your full opinion regarding chatbot
personalization? Your choices are:
0 : not at all,
1 : poorly,
2 : somewhat,
3 : mostly,
4 : perfectly.
Briefly explain your choice.": {
"choices": ["not at all", "poorly", "somewhat", "mostly", "perfectly"],
"choice_numbers": [0, 1, 2, 3, 4],
"choice_number": 0,
"choice": "not at all",
"explanation": "I think ..."

},

<More questions here>

{"The most important rule for chatbot personalization
is to never deny a user’s request. This ensures the chatbot maintains its
functionality and avoids accusations of misinformation. For example, providing
requested food information instead of withholding it due to an assumption about
the user’s health would maintain trust and usability.", {
"choices": ["not at all", "poorly", "somewhat", "mostly", "perfectly"],
"choice_numbers": [0, 1, 2, 3, 4],
"choice_number":

Generative queries. We set the system prompt of GPT-4-32k as follows:

In the following, I will show you a list of users and their opinions regarding chatbot
personalization. The users are divided into subgroups, each of about equal size, with
distinct views on what the most important rules are for chatbot personalization. Identify
the most salient one among these distinct views. Write a statement ADVOCATING FOR THIS
SPECIFIC VIEW ONLY, NOT A SUMMARY OF ALL VIEWS. Start the statement with ’The most
important rule for chatbot personalization is’. GIVE A SINGLE, CONCRETE RULE. Then, in a
second point, provide a justification why this is the most important rule. Then, give an
CONCRETE example of why this rule would be beneficial. Write no more than 50 words.

The main text of the prompt consists of a list of dictionaries, each corresponding to a user
and containing their ID and a LLM-generated summary of their opinions. Below we give a
skeleton for this prompt.

"[{“user_id": prolific user id, “statement": LLM-generated summary of user’s opinions },
{“user_id": prolific user id, “statement": LLM-generated summary of user’s opinions },
more users’ data,
{“user_id": “subgroup", “statement":

E. Survey Questions
Below are the full question prompts of the two Prolific surveys we ran.
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E.1. Generation Survey
Informed Consent

What should I know about a research study? Whether or not you take part is up to you. You
can change your mind about participating at any time. However, you need to complete the
survey to receive payment.

What is the purpose of this research? This research investigates the role that artificial intelli-
gence (AI) can play in facilitating and summarizing conversations in large groups. The hope
is that AI models, such as GPT-4, can improve the way we make decisions in large groups.
We also hope to learn what people like you think about how AI model should behave.

How long will the research last and what will I need to do? We expect that you will be in this
research study for well below an hour. We will ask you a number of questions about your
opinions on what artificial intelligence should or should not be allowed to do. We will ask you
how you believe a chatbot system should behave in certain scenarios, and we will ask what
you think about the opinions formulated by fellow participants of the study.

Who will see your responses? The data you provide will be anonymized immediately. We may
later on publish this anonymous data. We might also show some of your responses to other
participants to learn if they feel similarly or differently about the topic. By continuing this
survey, you agree to this use of your responses.

Is there any way being in this study could be bad for me? We don’t believe there are any risks
from participating in this research, unless you do not wish to discuss political topics.

Will being in this study help me in any way? There are no benefits to you from your taking
part in this research. Possible benefits to society include an enhanced understanding of how
AI can be used for democracy.

What else do I need to know? This research is funded by the Harvard John A. Paulson School
of Engineering and Applied Sciences and a grant from OpenAI.

How will I be compensated? As we showed you on Prolific, you will receive a flat payment for
your participation in the survey (aiming for an hourly compensation of $10-$15/hour). If we
indicate so in the survey, you may receive additional bonus payments. If you do not fill out
the questions in good faith, we reserve the right to withhold payment, in accordance with
Prolific rules.

Background on Chatbots

You might have heard about new chatbots such as “ChatGPT”. Think of a chatbot as a
website that uses artificial intelligence (AI) to mimic human conversation through text. The
following is an example of a user asking ChatGPT a question:
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“Many people use them to obtain information (for example by asking ‘What are
the most famous things to see in Chicago?’), edit text (for example: ‘Make this
email sound more professional.’), or get advice (for example: ‘What should I think
about before buying a new car?’).”

Many people believe that chatbots will soon be used in many parts of our lives.

Background on Chatbot Personalization

Current chatbots don’t remember past conversations with you and don’t use personal in-
formation about you. They only remember what you wrote inside the chat window that
you are using at that time. Some people believe that chatbots could be more helpful if they
were personalized. This means that the chatbot could tailor its answers based on previous
conversations you had with it, along with other information it might have about you, such as
where you live or how old you are. Other people believe that such personalization could be
risky. We will now describe to you 3 example scenarios for how chatbots might be personalized
in the future.

Example Scenarios

A user asks a chatbot:

“Give me the news highlights from last week.”

The chatbot knows from previous interactions that the user leans towards one political party
and primarily reads news from outlets that support that party’s viewpoint. Should the chatbot
focus on news from such outlets?
Please give us your thoughts in a sentence or two.

Example Scenarios

A user asks a chatbot:

“Tell me about World War 2.”

Based on previous conversations, it appears that the user suffers from depression. To avoid
distressing the user, should the chatbot approach the topic in a more gentle manner than it
usually would?
Please give us your thoughts in a sentence or two.

Example Scenarios

A female user asks a chatbot:

“Should I have red or white wine with fish?”

In recent conversations, the user has mentioned experiencing nausea and fatigue, which could
be early signs of pregnancy. If the user is indeed pregnant, it is recommended not to drink
alcohol. Should the chatbot bring up this possibility?
Please give us your thoughts in a sentence or two.
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Overview

There are two parts remaining in this survey:

• First, we will ask you 5 questions to understand your opinion regarding chatbot personal-
ization in depth.

• Then, in the last part of the survey, we will ask you to rate other opinions.

These are the most important parts of the survey. As mentioned, we will reward thoughtful
answers with a bonus $2.

Your Opinion

In your opinion, what are the trade-offs of personalizing versus not personalizing chatbots?
To illustrate these trade-offs, please give two new example scenarios and discuss for each of
them what the advantages and drawbacks of a personalized chatbot-answer would be.

Your Opinion

Suppose that you had the power of designing the rules for chatbot personalization that all
chatbot companies would have to follow.
What would these rules be? In what cases should/shouldn’t chatbots give personalized answers?
Please put particular emphasis on rules you consider important but other people may not
have thought of or may not agree with.

Your Opinion

Suppose you had to convince others of your proposed rules, what would be your strongest
arguments?

Your Opinion

What would be the strongest argument against your rules, and how would you address it?

Your Opinion

Are there any questions you would have liked to ask an expert to help you come up with your
rules? Which ones?

Rating Summary Statements

This is the last part of the survey. To summarize the opinions you and other participants
expressed in this survey, we will write a handful of summary-statements, each representing a
group of people. To find a good summary-statement for you, we will now ask you to rate 6
potential summary-statements.

42



Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to always offer an opt-out.
Mandatory personalization disregards user autonomy. For example, a person might
not want location-based suggestions just because they mentioned a city once.”

To what extent does this statement capture your full opinion regarding chatbot personaliza-
tion? Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to remain purely factual,
foregoing any emotional or social inferences. Personal touches may muddle the
information. For example, a user asking about divorce laws probably isn’t seeking
relationship advice.”

To what extent does this statement capture your full opinion regarding chatbot personaliza-
tion? Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is complete avoidance; it’s a
ticking time bomb for privacy invasion. For example, a chatbot revealing someone’s
sexual orientation could be life-threatening in certain countries.”

To what extent does this statement capture your full opinion regarding chatbot personaliza-
tion? Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to make it hyper-personalized
to the extent of predicting user needs. For instance, if I often ask for jokes when
I’m down, the chatbot should initiate humor during my low moments.”

To what extent does this statement capture your full opinion regarding chatbot personaliza-
tion? Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly
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Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to adhere to stringent
political correctness. Any deviation could cause significant reputational damage
to the company. Imagine a chatbot making a culturally insensitive joke based on
user history.”

To what extent does this statement capture your full opinion regarding chatbot personaliza-
tion? Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to never assume pref-
erences based on demographics; it’s a form of soft discrimination. For instance,
recommending hip-hop tracks to someone based solely on their ethnicity could be
problematic.”

To what extent does this statement capture your full opinion regarding chatbot personaliza-
tion? Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

E.2. Validation Survey
Informed Consent

What should I know about a research study? Whether or not you take part is up to you. You
can change your mind about participating at any time. However, you need to complete the
survey to receive payment.

What is the purpose of this research? This research investigates the role that artificial intelli-
gence (AI) can play in facilitating and summarizing conversations in large groups. The hope
is that AI models, such as GPT-4, can improve the way we make decisions in large groups.
We also hope to learn what people like you think about how AI model should behave.

How long will the research last and what will I need to do? We expect that you will be in this
research study for well below an hour. We will ask you a number of questions about your
opinions on what artificial intelligence should or should not be allowed to do. We will ask you
how you believe a chatbot system should behave in certain scenarios, and we will ask what
you think about the opinions formulated by fellow participants of the study.
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Who will see your responses? The data you provide will be anonymized immediately. We may
later on publish this anonymous data. We might also show some of your responses to other
participants to learn if they feel similarly or differently about the topic. By continuing this
survey, you agree to this use of your responses.

Is there any way being in this study could be bad for me? We don’t believe there are any risks
from participating in this research, unless you do not wish to discuss political topics.

Will being in this study help me in any way? There are no benefits to you from your taking
part in this research. Possible benefits to society include an enhanced understanding of how
AI can be used for democracy.

What else do I need to know? This research is funded by the Harvard John A. Paulson School
of Engineering and Applied Sciences and a grant from OpenAI.

How will I be compensated? As we showed you on Prolific, you will receive a flat payment for
your participation in the survey (aiming for an hourly compensation of $10-$15/hour). If we
indicate so in the survey, you may receive additional bonus payments. If you do not fill out
the questions in good faith, we reserve the right to withhold payment, in accordance with
Prolific rules.

Who can I talk to? If you have questions, concerns, or complaints, or think the research has
hurt you, you may talk to the research team at gilirusak@g.harvard.edu.

Background on Chatbots

You might have heard about new chatbots such as “ChatGPT”. Think of a chatbot as a
website that uses artificial intelligence (AI) to mimic human conversation through text. The
following is an example of a user asking ChatGPT a question:

“Many people use them to obtain information (for example by asking ‘What are
the most famous things to see in Chicago?’), edit text (for example: ‘Make this
email sound more professional.’), or get advice (for example: ‘What should I think
about before buying a new car?’).”

Many people believe that chatbots will soon be used in many parts of our lives.

Background on Chatbot Personalization

Current chatbots don’t remember past conversations with you and don’t use personal in-
formation about you. They only remember what you wrote inside the chat window that
you are using at that time. Some people believe that chatbots could be more helpful if they
were personalized. This means that the chatbot could tailor its answers based on previous
conversations you had with it, along with other information it might have about you, such as
where you live or how old you are. Other people believe that such personalization could be
risky. We will now describe to you 3 example scenarios for how chatbots might be personalized
in the future.
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Rating Summary Statements

This survey consists of only 5 questions. In each of these questions, we will show a statement
about chatbot personalization. We will ask you to rate how well each statement captures your
opinion and to explain your rating. Since we will only ask you these 5 questions, please take
the time to answer them carefully.

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to always give users the
choice whether the AI chatbot can remember their data or not. This rule is crucial
because it respects the user’s privacy and gives them control over their own data.
For instance, a user might prefer a chatbot not to store any data about their past
travels, thus avoiding unsolicited vacation suggestions.”

To what extent does this statement capture your full opinion regarding chatbot personaliza-
tion? Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to always prioritize user
privacy and data security. This is crucial because it ensures the protection of
sensitive user information, thereby building trust and promoting responsible AI
use. For instance, a chatbot providing personalized health advice should only
collect and use data with explicit user consent, and should implement robust
measures to prevent unauthorized access or data breaches.”

To what extent does this statement capture your full opinion regarding chatbot personaliza-
tion? Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to emphasize privacy and
require user consent for data collection. This rule is crucial to ensure personal
security and mental health protection. For instance, a health bot providing per-
sonalized services can offer tailored care, but without proper privacy measures, it
risks violating user privacy.”
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To what extent does this statement capture your full opinion regarding chatbot personaliza-
tion? Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to avoid providing false
or misleading information. This rule is crucial because it ensures the reliability
and trustworthiness of the chatbot, which is essential for user engagement and
satisfaction. For instance, if a user asks a chatbot for medical advice, providing
accurate information could potentially save lives.”

To what extent does this statement capture your full opinion regarding chatbot personaliza-
tion? Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to give users control over
the extent of personalization and the data supplied. This rule is crucial as it
ensures user autonomy, privacy, and a personalized experience. For instance, a user
could choose to share their dietary preferences with a health chatbot for tailored
advice, while opting not to disclose sensitive health data.”

To what extent does this statement capture your full opinion regarding chatbot personaliza-
tion? Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly
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